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Helaman Ferguson's massive sculpture, entitled Four Canoes, resides outside of the 
Science and Engineering Center on the campus of the University of St. Thomas in St. 
Paul, MN. (See [1] for pictures of the artwork and installation process). The sculpture 
consists of two linked granite "donuts", one red and the other black. Each measures 
six feet in diameter, and weighs more than three tons. These donuts rest on granite 
pedestals rising two feet above thirty jagged granite hexagons that tile the ground 
beneath the sculpture. So, why is it called Four Canoes? What does it have to do with 
mathematics? What is the significance of the tiling? What rules govern placement 
of the individual tiles? Is it periodic? Why don't the donuts wobble or fall off the 
pedestals? By combining different mathematical approaches, this paper will attempt 
to answer these questions. 

Figure 1 Helaman Ferguson's Four Canoes. (Photo courtesy of University Relations, Uni
versity of St. Thomas.) 
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Mobius Bands, Klein Bottles, and Canoes 

Understanding Four Canoes requires some knowledge of Mobius bands and Klein 
bottles. The reader who is unfamiliar with these can find ample information in recre
ational mathematics books and websites; for example, see [2] or [3]. 

Helaman Ferguson's model of a Mobius band, which differs from the usual con
struction, but is better suited to understanding Four Canoes, is in cross-cap form as in 
[4]: Imagine a strip of paper, with the ends labeled "a" to be identified, as in FIGURE 2. 
Now curve the strip, as though you were creating a cylinder, bringing the a-edges near 
each other at the top of the curve. Rather than twisting one edge 180 degrees to iden
tify the a-edges as in the usual construction, imagine making a crease at the center 
of each a-edge, folding downward in an inverted v-shape. Sew these two inverted v's 
together across each other, tip-to-tip and tail-to-tail. The Mobius band now has a self
intersection, called a cross-cap, along the seam (see FIGURE 3). 

Figure 2 Planar mode l of a Mobius band. 

Figure 3 A Mobius band: a cylinder with a cross-cap. 

An alternative way to think of the Mobius band in cross-cap form is to start with a 
canoe, like the one pictured in FIGURE 4. A canoe can be constructed from a (more 
or less) rectangular sheet of material. The bow and stem are the a-edges, and after 
folding along the keel or center line, each has been sewn (in non-Mobius fashion) to 
itself. Imagine stretching and curling the canoe of FIGURE 4 upward and around at the 
ends until the bow and stem meet. Cut the bow and stem apart along the seams and 
re-sew the forward port side to the aft starboard side and vice versa, again constructing 
a surface like the one in FIGURE 3. We have s�mply traded fore and aft, port and 
starboard for the tips and tails of the a-arrows. 

FIGURE 5 shows the standard planar model of a Klein bottle. Sewing together the 
edges marked "b" (respecting the direction of the arrows), we get a cylinder with two 
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Figure 4 Canoe. (Photo courtesy of the Mohawk Canoe Company.) 
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oppositely oriented boundaries marked "a". In order to complete the construction by 
sewing the a-edges together, we have to allow the bottle to intersect and pass through 
itself. (See [2] or [3] for more about Klein bottles.) 

b 

a a 

b 

Figure 5 (a) Planar Klein bottle. (b) G lass Klein bottle. (Photo courtesy of Acme Klein 
Bottles.) 

A second way to create a Klein bottle is by sewing two Mobius bands together 
along their simple closed curve boundaries. You'll get a pinched part when you're 
near the end of the sewing, where the Mobius bands need to pass through each other 
in order to complete the construction. If you could do this in three dimensions, you'd 
get a Klein bottle. FIGURE 6 shows the sewing process. To convince yourself that 
FIGURE 6 represents a Klein bottle, imagine sewing together the edges marked "b2" to 
get a cylinder. The boundaries of this cylinder are the two edges to be sewn together, 
one oriented clockwise, one counterclockwise, just as in FIGURE 5 .  

The well-known anonymous limerick describes i t  nicely: 

A mathematician named Klein 
Thought the Mobius strip was divine 
And he said, "If you glue 
The edges of two, 
You'll get a weird bottle like mine!" 

Finally, to understand the name, Four Canoes, imagine that two flexible rubber 
canoes are stacked "gunnels-to-gunnels". Bend and curve them into a donut shape, 
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Figure 6 A K le i n  bott le  i s  two Mob i u s  bands sewn together a long their bou ndar i es. 

stretching the bottom one while contracting the upper one in a complementary fashion. 
The keel of one canoe stays outermost, and the keel of the other one is innermost, 
their gunnels still touching. To transform these canoes into Mobius bands in cross-cap 
form, we need to unlace the bows and stems, and cross-sew them as we did earlier 
in FIGURE 3 .  Lastly, sew these two canoes to each other along their gunnels to get a 
Klein bottle in double cross-cap form. This is consistent with our earlier view of the 
Klein bottle as two Mobius bands sewn together. Finally, the name of the sculpture 
fits: each "pinched donut" is a Klein bottle, each Klein bottle is two canoes. Hence we 
have Four Canoes. (For Ferguson's description and explanation of Four Canoes, see 
[4].) 

The Tiling 

Shifting our focus to the tiles beneath the sculpture, as depicted in FIGURE 7, consider 
a hexagon instead of a rectangle. With edges labeled as in FIGURE 8a, our hexagon 
also represents a Klein bottle. (As in FIGURES 5a and 6, sew together the h-edges to 

Figure 7 Helaman Ferguson's patch of th irty t i l es.  
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Figure 8 (a) labeled hexagon Klein bottle. (b) Notched hexagon Klein bottle. 

17 1 

get a cylinder whose boundary edges are oppositely oriented). FIGURE 8b is the outline 
of a granite tile from the base of Ferguson's sculpture. The rhombuses and triangles 
cut from the sides of these hexagons replace the arrows and labels from FIGURE 8a. 
These cuts indicate the identification of edges that transforms each hexagon tile into a 
Klein bottle. The cuts also create a "right side" and a "wrong side", so that if a tile is 
flipped over, it doesn't match any right-side-up tile. (Without the triangular cuts, the 
hexagon has no right or wrong side). Ferguson's tiles are all rotations of one another; 
all are "face-up". 

In addition to the 30 jagged hexagons, the tiling includes 42 comer pieces (one 
wherever three hexagons meet), and 71  edge-arrows between edges of adjacent tiles. 
The edge-arrows are all identiCal, but eight differently shaped comer pieces are needed. 
The shape of the comer piece required at a given comer depends on the number of 
edge-arrows pointing inward at that comer and on how many of the three hexagons 
meeting there have a triangle cut from an edge. 

All triangles and rhombuses cut from the edges of the hexagon are necessary for 
the tile to represent a Klein bottle. However, the rule for placement of the tiles, stated 
below, depends only on the rhombus cuts, so in our effort to understand the tiling, we'll 
eliminate the triangle cuts to make the pictures less cluttered. 

The single rule governing the placement of tiles in FIGURE 7 is: two tiles can be 
adjacent along an edge whenever an edge-arrow is created by the pair of rhombus 
cuts (see FIGURE lOa), but not when a zig-zag is created (see FIGURE JOb). 

Figure 9 A pinched donut. 
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Figure 10 (a) Legal placement of tiles. (b) Illegal placement of tiles. 

Ferguson had two objectives in placing the tiles: following the rule he had created, 
and making the finished patch of tiles fit together in an aesthetically pleasing way 
[5]. He was not concerned with the periodicity of the patch. Consequently, there is no 
apparent pattern to the rotation of each tile. Notice that in applying Ferguson's rule an 

arrangement of tiles could occur in which no tile might legally fill a given hole in the 
tiling (for example, FIGURE II). In this case, Ferguson simply rotated a tile or two, so 
that the hole could be filled in [5]. 

Figure 1 1  An impossible hole to fill. 

The Four Canoes tiling appears to be non-periodic, so following the installation, 
Ferguson wondered whether the tiles admitted a periodic tiling [5]. A periodic tiling 

is one in which there exist two non-parallel translations which, when operating on a 
small patch or unit cell of the tiling, will generate the entire pattern. A set of tiles that 
does not admit a periodic tiling is called aperiodic, and such sets are difficult to come 
by. Penrose tiles are a well-known aperiodic tiling. For more on Penrose tiles, see [6]. 

THEOREM I. Helaman Ferguson's Klein bottle tiles can be arranged to tile the 
plane periodically. 

Pro(Jf Allow only rotations of 0°, 120°, and 240°, as in FIGURE 12. We use a 
different color for each of the three rotations of the Klein bottle tile. • 

FIGURE 12 exhibits a periodic tiling of the plane whose symmetry group is p31m. 

See 17] for more on symmetry groups of tilings of R2. See [8] for constructions of 

tilings for each of the seventeen planar symmetry groups. 
The unit cell of the periodic tiling in FIGURE 12 is surprisingly small: a rhombus or 

hexagon with the same area as three hexagon tiles! We've included two such unit cells 
in FIGURE 12, but others are possible of course. Two adjacent sides of the rhombus 
unit cell provide the translations that generate the pattern. 

There are other ways to create the entire pattern from a small patch. If we allow 
all symmetry operations (reflections, rotations and glide reflections as well as transla-
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Figure 12 Two unit cells in a periodic tiling by Helaman Ferguson's Klein bottle tiles. 

tions), then just half of the rhombus-a triangular patch bounded by the mirror lines 
in FIGURE 13-will do. Such a patch is called afundamental region for the tiling, and 
is always no bigger than the unit cell. The fundamental region can have any shape that 
joins with itself to produce a periodic pattern. M. C. Escher's tessellations provide a 
rich source of tilings with irregularly shaped fundamental regions [9]. 

Figure 13 The l ines of symmetry in the periodic til ing. 

It is still unknown whether Ferguson's patch of thirty tiles (FIGURE 7) can be con
tinued to periodically (or aperiodically) fill the plane (or the sphere) [5]. 
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we look at some simple geometry to determine the distance between centers of ad
jacent hexagons (the dimensions of the hexagon tiles). Second, we use multivariable 
calculus to guarantee the secure fit of each pinched torus into a "bowl" in the pedestal 
supporting it. 

Dimensions of the tiles. Each donut measures six feet in diameter, is two feet thick, 
and has a two-foot-diameter-hole in the middle. Each rests on the center of a pedestal, 
which is just a prism on a Klein bottle hexagon tile (see FIGURE 1). 

The distance between adjacent hexagon centers can be determined easily from the 
following two facts: 

1. Each two-foot-thick donut passes through the two-foot-diameter hole in the other 
donut, so they fit together snugly, at right angles (see FIGURE 14). The linked 
donuts are tilted 45 degrees from a vertical (or horizontal) plane. 

2. In the tilted position, each donut rests on its shell, exactly one foot below the center 
circle deformation retract of the donut; i.e, the circle that is the very core of the 
donut (FIGURE 15). 

Figure 14 Mathematica plot of  the linked Klein bottles. 

Figure 15 The core of Figure 14 before ti lting 45 degrees. 
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The first fact gives us the linked circles in FIGURE 1 5  that represent the donut-cores. 

The points P and S are each on a circle that forms the core of a donut. Point Q is on 
the core of the vertical donut, and at the center of the hole of the horizontal donut. 
Similarly, point R is on the core of the horizontal donut, and at the center of the hole 
of the vertical donut. Observe that the two-foot segments P Q and Q R are orthogonal, 
as are Q R and R S. These form three edges of a cube with P and S at opposite corners. 

Thus the distance from P to S is 2.J3 feet. 
Now the point P' (respectively S') is exactly one foot from P (respectively S) on 

the shell of the donut where it would rest if the tilted sculpture were placed on a flat 
surface. So the distance from P' to S' is precisely the distance between centers of 
adjacent hexagons in the patch of tiles. Finally, we use the second fact to conclude 
that this distance, the distance between the centers of adjacent tiles in the tiling, is also 

2.J3 feet. 
Before we can determine the exact size of a hexagon tile, we need to specify the 

width of an edge-arrow, that is, the width of the gap between adjacent tiles. Ferguson 
chose to make the width of an arrow equal to one-sixth the width of a hexagon tile, so 

the width of a hexagon (from side to opposite side) is 1 2.J3/7 feet, and the width of 

an edge-arrow is 2.J3 /7 feet. From the side-to-side width of the hexagon, we easily 
calculate that the distance between its opposite vertices is 24/7 feet. Indeed, upon 
measuring the tiles, we find that these dimensions are accurate! 

Stability. Finally, we turn to the pedestals supporting the granite Klein bottles. If 
the pedestals were flat on top, each Klein bottle would contact its pedestal at a single 
point, and the sculpture would wobble dangerously. To prevent this, a "bowl" was cut 
into the top of each pedestal to hold the sculpture securely. What shape does this bowl 
have? We seek the equation of the curve that sweeps out the bowl. 

Consider the point on the torus where the 45 degree tilted torus would rest if it 
were placed on a horizontal plane. Any vertical plane slicing through the tilted torus at 
this point will intersect the torus in a closed curve. Take the vertical plane that is also 
perpendicular to a small circular cross section of the torus, as in FIGURE 1 5. Because 
of the symmetry of the torus, this plane intersects the torus in a symmetric, kidney bean 
shaped curve. If we rotate this curve to cut out a bowl from the top of the pedestal, this 
bowl will contact the torus all along the kidney bean curve. The bowl's depth can be 
adjusted to give the desired stability. 

To find the equation of the curve, we parameterize the torus and slicing plane, and 
find the curve of their intersection. 

Consider the torus, lying on its side, given in cylindrical coordinates [r, () , z] by 

(r - 2)2 + z2 = 1 .  
Changing to Cartesian coordinates (x ,  y, z), we have 

x2 + Y2 + z2 - 4.j x2 + y2 + 4 = 1 .  
We'll use the "slicing plane" given by x + z = 2, at  a 45 degree angle to  the torus 

(see FIGURE 1 6). Notice that the intersection of the plane with the torus is indeed a 
curve shaped like a kidney bean. 

Next, we perform two transformations to tilt the plane vertically, and put the origin 
of the coordinate system at the center of the small (vertical) circular cross section of 
the torus: First use the translation x -+ x + 2. Now the torus is given by: 

(x + 2)2 + y2 + z2 - 4.j (x + 2)2 + y2 + 4 = 1 .  
and the slicing plane is x + z = 0 .  



176 MAT H EMAT ICS MAGAZI N E  

Figure 16 Torus and slicing plane. 

Secondly, rotate the coordinate system, so that the slicing plane is given by x = 0. 
Now the torus and plane are both tilted 45 degrees. The rotation matrix is 

( cosO 
sinO 

Thus, the torus is given by 

-sinO ) cosO ' where 0 = rr/4. 

( � (x - z) + 2 r + i ( � (x + z) + 2 r - 4 ( � (x - z) + 2 r + y2 + 4 = 1' 

and the plane is given by 

../2 ../2 
T(x- z) + 2(x + z) = 0; i.e., x = 0. 

Using Mathematica, we solve these equations simultaneously to obtain the equation 
for their intersection curve: 

z2 + y2 - 2hz - 4J; + y2 -2hz + 4 + 7 = 0. 

This curve is plotted in the yz-plane in FIGURE 17 (again, with Mathematica), and 
looks exactly as we expected it to look from FIGURE 16. 

The bowl at the top of each pedestal was achieved by rotating the lower part of 
this curve about a vertical axis through the pedestal's center to sweep out the required 
volume. The sculpture rests snugly in the two bowls and is stable enough to withstand 
the college students (and professors) who occasionally climb on the canoes to pose for 
photographs. 
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A large literature exists on Bernoulli numbers and Bernoulli polynomials, much of it in 
widely scattered books and journals. This article serves as a brief primer on the subject, 
bringing together basic results (most of which are well known), together with proofs, 
in a manner readily accessible to those with a knowledge of elementary calculus. Some 
new formulas are also derived. 

Background 

Bernoulli numbers and polynomials are named after the Swiss mathematician Jakob 
Bernoulli ( 1 654-I705) , who introduced them in his book Ars Conjectandi, published 
posthumously (Basel, 1 7 1 3). They first appeared in a list of formulas (reproduced in 
FIGURE 1 )  for summing the pth powers of n consecutive integers, for p = 1 to p = 
1 0. Bernoulli uses the symbol f, an elongated S, to indicate summation. In modern 
notation his first three examples are equivalent to the familiar relations 

n I Lk = -n (n + 1 ) ,  
k=l 2 
n 1 
Lk2 = -n (n + I ) (2n + 1 ) ,  
k=l 6 
n I Lk3 = -n2 (n + 1 )2 . 
k=i 4 

A general formula for the sum of pth powers (not explicitly stated by Bernoulli), 
can be written as 

I: kP = 
Bp+J (m ) -Bp+i, p 2:: 1 ,  m 2:: 2, 

k=l p + 1 
( 1 )  

where Bn (x) is a polynomial in x of degree n ,  now called a Bernoulli polynomial, 
given by 

Bn (x) = t (n) Bkxn-k, 
k=O k n :=:: 0, (2) 

and where the Bk are rational numbers called Bernoulli numbers. They can be defined 
recursively as follows: 

Bo = 1 ,  and � (n )Bk = 0 for n 2:: 2. 
k=O k (3) 
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Figure 1 Reproduction of the list of formulas on p. 97 of Ars Conjectandi, in which 
Bernoul li numbers and Bernoul li polynomials first appeared in print. The open oo sym
bol in the second column was used in that era as an equals  sign. The large asterisk in 
later columns indicates zero coefficients of missing powers. Courtesy of the Archives, 
California Institute of Technology. 

Using this recursion with n = 2, 3, . . .  , we quickly obtain the following: 

1 1 1 1 
Bt = --, B2 = -, B3 = 0, B4 = -

30
' B5 = 0, B6 = 

42
' 

2 6 
1 

B9 =0, 
5 

B7 = 0, Bs =-
30

' Bw = -. 66 
Equation (2) shows that Bn = Bn (0) for n ;::: 0. The sum in (3) can also be written in 
the form 

(4) 

which, in view of (2), reveals that 

(5) 

Bernoulli numbers with even subscripts :::: 2 alternate in sign, and those with odd sub
scripts ;::: 3 are zero. A knowledge of Bernoulli numbers, in turn, quickly gives explicit 
formulas for the first few Bernoulli polynomials: 

1 
B0(x) = 1, Bt(x) = x- 2' 2 1 

B2(x) = x - x + -, 6 
4 3 2 1 

B4(x) = x  - 2x +x -
30

, 

5 5 4 5 2 1 
Bs(x) = x - -x + -x - -x. 

2 3 6 
Bernoulli proudly announced [5, p. 90] that with the help of the last entry in his list of 
formulas in FIGURE 1 it took him less than half of a quarter of an hour to find that the 
tenth powers of the first 1000 numbers being added together will yield the sum 

91 ,409;924,241 ,424,243,424,241 ,924,242,500. 
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Today Bernoulli numbers and polynomials play an important role in many diverse 
areas of mathematics, for example in the Euler-Maclaurin summation formula [2], in 
number theory [1], and in combinatorics [4]. One of the most remarkable connections 
is to the Riemann zeta function s(s), defined for s > 1 by the infinite series 

00 1 
s-<s) = :L -. 

k=l ks 
(6) 

Leonhard Euler ( 1 707-1 783) discovered that when s is an even integer, the sum can 
be expressed in terms of Bernoulli numbers by the formula 

In particular, 

s (2n)  = (2rr)2n IBznl 0 

2(2n) !  

Jr2 
s (2) = - , 6 

The Basel problem 

(7) 

(8) 

The problem of evaluating s (2) in closed form has an interesting history, which ap
parently began in 1 644 when Pietro Mengoli ( 1 625-1686) asked for the sum of the 
reciprocals of the squares. The problem became widely known in 1 689 when Jakob 
Bernoulli wrote, "If somebody should succeed in finding what till now withstood our 
efforts and communicate it to us we shall be much obliged to him." By the 1 730s it was 
known as the Basel problem and had defied the best efforts of many leading mathe
maticians of that era. Euler solved the problem around 1 735 in response to a challenge 
by Jakob's younger brother Johann Bernoulli ( 1 667-1748), who was Euler's teacher 
and mentor. Euler soon obtained the more general formula in (7). Sadly, Jakob did 
not live to see young Euler's triumphant discovery and its surprising connection with 
Bernoulli numbers . For a proof of (7) see [1, p. 266] . To date, no simple closed form 
analogous to (7) is known for s(n) for any odd power n 2:: 3 .  

Generating functions 

There are alternative methods for introducing Bernoulli numbers and polynomials. 
One of the most useful was conceived by Euler, who observed that they occur as coef
ficients in the following power series expansions: 

and 

Z � Bn n 
ez - 1 = L...,; -;;Tz ' n=O 

lz l < 2rr, 

zeXZ 00 Bn(X) n 
-- - "'

--z lz l < 2rr. 
ez - 1 - L...,; n! ' n=O 

(9) 

( 1 0) 

The parameters x and z can be real or complex. The functions on the left are called 
generating functions for the Bernoulli numbers and polynomials. 



VOL. 8 1 , NO. 3 ,  JUNE 2 008 1 8 1 

Basic properties deduced from the generating functions 

The use of generating functions leads to simple and direct proofs of many basic prop
erties of Bernoulli numbers and polynomials, the most important of which are derived 
here. For example, to deduce (2) from (9) and ( 1 0) , write 

� Bn (x) n _ Z xz _ (� Bn n) (� Xn 
n) L....t --z - -- · e - L....t -z · L....t -z . 

n=O n !  eZ - 1 n=O n !  n=O n !  
( 1 1 ) 

Multiply the two power series on the right, using the fact that the product of two 
convergent power series 

00 00 
A(z) = L a (n)zn and B(z) = L b(n)zn , 

n=O n=O 

is another power series given by 
00 n 

A(z)B(z) = L c(n)z\ where c(n) = L a (k)b(n - k) . 
n=O k=O 

Equating coefficients of zn in ( 1 1 ) we obtain 

Bn(X) n Bk Xn-k 

----;;! = {; k! (n - k) ! ' 

which is equivalent to (2) . Incidentally, (9) and ( 1 0) also show that 

To deduce that 

rewrite (9) in the form 

Bzn+I = 0 for n 2: 1 ,  

Z Z Loo Bn n 
-- + - = 1 + -z . 
ez- 1 2 n !  n=2 

( 1 2) 

( 1 3) 

Now observe that the left member is an even function of z (it is unchanged when z is 
replaced by -z), hence the right member is even and therefore contains no odd powers 
of z, and we get ( 1 3) .  

The power-sum formula ( 1 ) and its extension ( 1 6) ,  are immediate consequences of 
the following: 

Difference equation: 

To prove ( 14), use ( 1 0) in the identity 

e<x+l)z exz 
z-- - z -- = zexz 

ez- 1 ez- 1 

( 1 4) 
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to obtain 

Equating coefficients of zn gives ( 14) .  Taking x = 0 in ( 14) we find a companion to 
( 1 2) :  

( 1 5) 

Replace x by x + k, and n by p + 1 in ( 1 4) ,  then sum on k to obtain the following 
extension of ( 1 ) :  

I': <x +k)P = Bp+I (m +x)-Bp+I (x), p 2: 1 ,  m 2: 1 . 06) 
k=O p + 1 

When x = 0, ( 1 6) reduces to ( 1 ) ,  and when x = ajd, d 'I= 0, it implies 

I': <a + dk)P = dP 
Bp+I (m + ajd)-Bp+I (ajd), p 2: 1 ,  m 2: 1 .  ( 1 7) 

k=O p + 1 

In particular, if a and d are integers, ( 1 7) provides a formula for the sum of the pth 
powers of m integers in arithmetic progression. 

Symmetry relation: 

This follows at once from the identity 
e(l-x)z e-zx 

z-- =-z . ez- 1 e-z- 1 

( 1 8) 

Take x = 0 in ( 1 8) to find Bzn+I ( 1 ) = -Bzn+I (0) , so by ( 1 5) and ( 1 0) this gives an
other proof of ( 1 3) .  When x = 1 /2 in ( 1 8) we get 

Bzn+I (�) = 0, n 2: 0. 

Now replace x by -x in ( 1 8) and use ( 14) to obtain 

Addition formula: 

(- 1 )n Bn (-x) = Bn (X) + nxn-I, n 2: 1 .  

This is an immediate consequence of the identity 

Taking y = 0 in (2 1 )  gives (2). 

ze<y+x)z zeYz 
--- = -- ·exz 
ez- 1 ez- 1 

( 1 9) 

(20) 

( 2 1) 
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Raabe's multiplication formula: 

m-1 ( k ) 
Bn (mx) =mn-l L Bn x+- , 

k=O m 

183 

n:::: 0, m:::: 1 . (22) 

This states that a sum of Bernoulli polynomials of degree n at equally spaced values 
of the argument is another Bernoulli polynomial of degree n .  To prove (22), equate 
coefficients of zn in the identity 

oo I-ns ( ) oo "'m-1 B ( + k) '""' m n mx n - '""' L-k=O n X ;; n 
� 1 z - � 1 z ,  
n=O n .  n=O n .  

which can be proved as follows. From ( 1 0) we have 

00 ( k ) zn ze<x+ #, )z zexz '""'Bn X+- - = = --ekzfm. � m n !  ez - 1 e2 - 1 n=O 

(23) 

Now sum both members on k for k = 0, 1 ,  ... , m - 1 .  The sum of exponentials is a 
geometric sum given by 

m-1 z 1 '""'ekzjm = e -
� ezfm _ 1 ' k=O 

if z :I 0. (The restriction z :I 0 is not serious because (23) holds trivially when z = 0.) 
Therefore 

oo "'m-1 B ( + k) xz m-1 xz '""' L-k=O n X ;; zn = _!!!___ '""'ekzjm = ze 
� n !  e2 - 1 � ezfm - 1 n=O k=O 

= m (zjm)e<mx)(z/m) 
= m 

oo Bn (mx) (�)n 
ezfm- 1 L n !  m n=O 

oo m1-n Bn (mx) n = I: ' z , 
n=O n .  

which implies (23) and hence (22). 

Another application of Bernoulli's power-sum formula 

Equation ( 1 7) extends ( 1 )  to the sum of the pth powers of m integers in arithmetic 
progression. It is natural to ask if there is a formula similar to ( 1 )  when the sum on the 
left is extended over those integers relatively prime tom. We will show that 

where L' indicates that the sum is extended over k relatively prime to m. In (24), 
J.L(d) is the well known Mobius function of elementary number theory, which enters 
naturally because of the following formula [1, p. 25] that selects numbers relatively 
prime tom: 



184 MATHEMATICS MAGAZINE 

Thus, we have 

" 1 1 if ( k ,m) = 1 
� p., (d) = 

0 otherwise. dl(k,m) 

m m-1 
I:' kP =I: I: p., (d)F .  
k=! k=! dlmanddlk 

Now write k = rd , and the foregoing equation becomes 

where in the last step we used ( 1 )  with m replaced by mjd .  This proves (24) . 
By using (2) to expand the Bernoulli polynomial in (24) in powers of mjd, we can 

also write 

m 1 1 p+l ( + 1) L kP = --
L p mr Bp+!-r L p., (d)dp-r . 

k=! p 
+ 1 r=l r dim 

(25) 

The dependence on the Mobius function can be removed by invoking Theorem 2.8 of 
[1 ] ,  which implies 

dim qlm 

where the product is taken over all prime divisors q of m .  Therefore we have an alter
native form of (25): 

m 
1 1 p+l ( + 1) L kP = --

L p mr Bp+!-r n ( 1 - qp-r) . 
k=! p + 1 r=l r qlm 

(26) 

When m = 1 000 and 
p 

= 10 the product contains only the primes 2 and 5, and (26) 
gives 

36,366,968,829,066,536,008,898,579,270,000 

for the sum of the tenth powers of those integers up to 1000 that are relatively prime 
to 1000. This sum is about 39 .8% of Bernoulli 's value mentioned earlier for the sum 
extended over all integers up to 1000, which is not too surprising because exactly 40% 
of the numbers less than 1 000 are relatively prime to 1000. Like Bernoulli, the author 
did this calculation by hand, but unlike Bernoulli it took him more than a quarter of an 
hour. 

Properties involving calculus 

Differentiate each member of ( 1 0) with respect to x and equate coefficients of zn to get 
the following: 

Derivative formula: 

B�(x) = nBn-! (x), n 2: 1 ,  (27) 
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which is also a consequence of (2). This leads to another proof of addition formula 
(2 1 ). Repeated differentiation of (27) gives 

B:(x) = n(n- l)Bn_z(x), . . .  , B�k)(x) = k!G)Bn-k(x). (28) 

On the other hand, for each fixed y the Taylor expansion of the polynomial Bn (y + x) 
in powers of x is given by 

n 1 n (n) n (n) 
Bn(Y + x) = � k!

B�k)(y)xk = � k 
Bn-k(y)xk = � k Bk(y)xn-k, 

which is (2 1 ). 
Now replace n by n + 1 in (27) and integrate to obtain the following: 

Integration formula: 

1y Bn(t)dt = 
Bn+t(Y)- Bn+t(x)

' n 2: O. 

x n + 1 

This, together with ( 1 4) ,  implies 

which, when x = 0, gives 

n ::=: 0, 

11 
Bn(t) dt = 0, n 2: 1 .  

From (29) we find the recursion relation 

Bn(X) =n 1x Bn-tU)dt+Bn(O), n 2: 1 .  

Recursion formulas for Bernoulli polynomials 

(29) 

(30) 

(3 1 ) 

(32) 

Equation (32) suggests another method for defining the Bernoulli polynomials and 
Bernoulli numbers recursively. Define b0 = 1 ,  and b0(x) = 1 .  Guided by (32) and 
(3 1 ), define 

(33) 

where the constant bn is chosen so that 

(34) 

It is easily verified that the functions bn(x) and constants bn obtained in this manner 
are exactly the same as the Bernoulli polynomials Bn (x) and the Bernoulli numbers 
Bn. For example, using (33) with n = 1 we find 

bt (x) = 1x bo (t) d t + bt = X + ht, 
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whereas (34) requires 

t bl (t) dt = � + bl = 0. Jo 2 

This gives b1 = - �  = B" and b1(x) = x- � = B1(x). Similarly, using (33) with n = 2 we find 

while (34) requires 

t b2(t) dt = �- � + b2 = 0, Jo 3 2 

so b2 = � = B2, and b2(x) = x2- x + � = B2(x). 
By induction we find bn = Bn and bn (x) = Bn (x) for all n :=::: 0. In other words, the 

recursion formulas 

together with B0 = 1 ,  B0(x) = 1 ,  provide an alternative method for defining Bernoulli 
numbers and polynomials recursively. 

The following further recursion formula for Bernoulli polynomials 

nBn(x)- xnBn-1 (x) = t (n)kBkxn-k, n :=::: 1 ,  k=l k (36) 

is a simple consequence of the familiar Pascal triangle property of binomial coeffi-
cients, 

In fact, from (2) we have 

which gives (36) after multiplication by n. 
Further recursion formulas for Bernoulli numbers 

The defining recursion in (3) and its variation in (4) can be written in other equivalent 
forms. First we show that (4) is equivalent to 

(37) 
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which is valid for n 2: 2 (but not for n = 1). Write 

to obtain 

1; (k: 1)Bk = � (n ; 1)Bk-� G)Bk. 
because the terms with k = 0 cancel. The first sum on the right is 0 by (3) and we see 
that (4) is equivalent to (37) . 

Next we show that (37), in turn, is equivalent to the following recursion which we 
believe is new: 

n ( n ) Bk 1 � k- 2 k 
= (n + 1 )(n + 2) - Bn+1• 

To derive this, use the relation 

C: 2) � = (n + 
k
1�n

1 
+ 2) (n ; 2). 

n 2: 2. (38) 

multiply both members of (38) by (n + 1)(n + 2), then add the summand terms for 
k = 0, 1 , and n + 1 to both sides to get the equivalent formula 

I:(k- 1)(n + 2)Bk = -(n + 2)Bn+1· 
k=O k 

Because of (3), this equation, in turn, is equivalent to 

I: k (n + 2)Bk = -(n + 2)Bn+1· k=1 k (39) 

Now write k(nt2) = (n + 2)(��D. cancel the common factor (n + 2), and replace n by 
n - 1, and (39) becomes (37). Hence (38) is equivalent to (4). 

A special case of (38),  obtained by Horata [3] states that 

L
n-1 (2n ) B2k+2 1 

-- - n2:1. 
k=O 2k 2k + 2 - (2n + 1)(2n + 2)' (40) 

To get this from (38), replace n by 2n in (38) and use the fact that Bk = 0 for odd 
k 2: 3 .  

Horata proved ( 40) by a complicated method that used formulas expressing 
Bernoulli numbers in terms of Stirling numbers of the second kind, and showed 
that both members of (40) are congruent modulo p for all primes p. Our direct proof 
of the more general result (38) does not depend on Stirling numbers or congruences. 

An alternative form of (37) can be obtained by taking x = 1 in (36) and using (5): 

n 2: 3. (41) 

To see that this is equivalent to (37), divide by n in (41), then subtract (n - 1)Bn_1 
from both sides to get (37) with n - 1 in place of n .  
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Yet another recursion can be obtained by integrating the product x Bn (x) in two 
ways. On the one hand, from (2) we have 

tBn (t)dt = 'L_ Bk tn+i - kdx = 'L_ k
- xn+2- k . 1x 

n (n) 1x n (n) B 
0 k=O k o k=O k n + 2 k 

Now calculate the same integral using integration by parts and (27) to obtain 

r tBn (t)dt = _
I
_ r tB�+1 (t)dt = -

1
- {xBn+1 (x)- r Bn+! (t)dt } Jo n + I Jo n + 1 Jo 

1 { Bn+2 (x)-Bn+2 (0) } = -- xBn+! (x)- . 
n + 1 n + 2  

Equating the two results we find the polynomial identity 

Ln (n) Bk n+2- k 1 { Bn+2 (x)-Bn+2 (0) } ----x - -- x B 1 (x) - --'---'-----'---
k=O k n + 2 - k - n + 1 n+ n + 2 

· 

When x = 1 this simplifies to 

---- - -- n:::::l . L
n (n) Bk Bn+i 
k=O k n + 2 - k - n + 1 ' 

(42) 

We leave it as a challenge to the reader to find another proof of ( 42) as a direct conse
quence of (3) without the use of integration. 

Concluding remarks 

In the three centuries after Jakob Bernoulli introduced his power-sum formulas, the 
polynomials and numbers that bear his name have been generalized in many different 
directions and have spawned hundreds of papers . You can get an idea of the many 
important areas of mathematics that have been influenced by these elementary topics 
by searching for Bernoulli numbers or Bernoulli polynomials on the world wide web. 

The author is grateful to an anonymous referee who pointed out that that an English 
translation of Bernoulli 's  Ars Conjectandi was published in 2005 by The Johns Hop
kins University Press under the title The Art of Conjecturing, together with Letter to a 
Friend on Sets in Court Tennis, by Dudley Sylla, and that collateral material related to 
the early history of ( 1 )  can be found in a paper by D. E. Knuth, Johann Faulhaber and 
Sums of Powers, in Mathematics of Computation 61 ( 1 993), 277-294, and in another 
Johns Hopkins publication, Pascals Arithmetic Triangle, by A. W. F. Edwards (2002), 
especially Chapter I 0 .  

Summary of basic formulas (as numbered in the text) 

Defining relations: 

(2) 

(4) 
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Special values: 

Bn = Bn ( l ) ,  n 2: 2 ,  Bn = Bn (O) , n 2: 0 

Generating functions: 

Difference equation: 

Symmetry relation: 

Addition formula: 

Bzn+i = 0, n 2: 1 

Z � Bn n 
ez - 1 

= � -;;! z , n=O 

zeXZ 00 Bn (X) n 
ez - 1  

=L:�z, n=O 

lzl < 2JT 

lzl < 2JT 

Raabe's multiplication formula: 

m-i ( k ) 
Bn (mx) = mn-i LEn X + - , 

k=O m 

Derivative formulas: 

n :=:: 0, m :=:: 1 

1 89 

( 1 2) 

( 1 3)  

(9) 

( 1 0) 

( 1 4) 

( 1 8) 

(2 1 )  

(22) 

B� (x) = nBn_, (x) ,  n 2: 2 (27) 

s:(x) = n (n - l )Bn_z (x ) ,  . . .  , B�kl (x) = k !
(:) sn-k (x) (28) 

Integration formulas: 

1Y Bn (t) dt = Bn+i (y)- Bn+i (x)
, n 2: 1 

x n + 1 

n :=:: 1 

n:::: 1 

Alternative recursion formulas: 

(29) 

(30) 

(3 1 ) 
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with B0 = 1 ,  B0 (x) = 1 ,  

� c: 2) �k = 
(n + 1 )

1
(n + 2) 

- Bn+I ' n ;:: 2 

n2Bn- I = - L 
n 

kBb 
n-2 ( ) 
k= l  k 

n;::3 

t (n) Bk Bn+ l 

k=O k n + 2 - k = n + 1 ' 
n;::O 

Power-sum formulas: 

p;:: 1 ,  m;:: 2 

(38) 

(4 1 )  

(42) 

( 1 )  

m 1 p+ l ( + 1) I:' kP = -- L P m' Bp+I-r flo- qP-') 
k=l p + 1 r= l r qlm 

p ;:: 1 ,  m ;:: 1 (26) 
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Erratum 

Authors Chungwu Ho and Seth Zimmerman have written to point out an error 
on page 1 4  of their paper "On Infinitely Nested Radicals," this MAGA Z I N E ,  Vol. 
8 1 ,  February 2008 : The gaps mentioned for the set S2 do not exist. Gaps exist 
only for sets Sa with a ;:: 3 .  
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In school, I had to memorize the values of sine and cosine at the angles 0, 30, 45 , 60, 
and 90 degrees. This always made me wonder: Why those angles and not others? After 
all ,  there is some angle whose sine is, say, 3/4. Why not include it in the table? More 
generally: What "nice" angles have "nice" values for sine and cosine? 

The main goal of this paper is to find answers to these questions "organically" 
by making naive guesses at the answers and seeing if these guesses are correct. By 
successively refining our naive guesses, we end up with essentially complete answers . 
The second goal of this paper is to highlight the connections between trigonometry 
and Galois theory by using results from a standard course on Galois theory to answer 
these questions. These things are well known to experts ; we aim to popularize them. 

The most a governor needs to know 

The third goal of this article is to help out former Governor Jeb Bush of Florida. At 
a July 2004 appearance to promote state-wide annual testing of students in public 
schools, a high school student asked him: "What are the angles in a 3-4-5 triangle?" 
The governor responded "I don't  know. 1 25 ,  90 . . . .  and whatever remains on 1 80." 
[14] Aside from not noticing that 1 25 and 90 add up to more than 1 80, it's not such a 
bad answer. In his favor, the governor remembered that the interior angles add up to 
1 80, something I 'm not confident my governor would remember. Also, he got one of 
the three angles right. Presumably he remembered that there is a right triangle that has 
sides 3-4-5 and applied the side-side-side congruence theorem to conclude that every 
3-4-5 triangle is a right triangle. 

Unfortunately, the story gets worse. The high school student then replied: "It's 30-
60-90," which we all know is wrong, because the cosine of 30 degrees is .J3 /2, not 
4/5. 

And the story gets yet worse. The AP reporter asserted that the correct answer was 
90, 53 . 1 ,  and 36.9 degrees, which-although not really wrong--does not address the 
question of whether or not the governor should have known these angles. A later story 
[16] did better. It quoted a retired math professor who said "I don' t  think those are very 
well known angles" and "I wouldn't expect many mathematicians to know that." 

A good answer to the student's question is provided by the following theorem: 

THE GOVERNOR ' S  THEOREM . If a right triangle has integer side lengths, then 
the acute angles are irrational, when measured in degrees. 

Looking at the trig table we all memorized, we notice that all the angles are integers 
when measured in degrees, so no one-much less a governor-should be expected to 
answer the student's  question. 

1 This is the text for the address at the 2006 MAA State Dinner for Georgia, held at Mercer University in 
April. 
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How to prove the theorem? One way is to get it as a corollary of Lehmer's Theorem, 
which we will prove in the next section. 

Remarks. The Governor's Theorem appears as problem 239b in [15] . The theorem 
is also true if the word "degrees" is replaced by "radians". That is a standard conse
quence of the Lindemann-Weierstrass Theorem, and is Exercise 1 in §4. 1 3  of [8] . 

Degrees 

Since all the angles in the standard trig table are rational when measured in degrees, 
below we only consider angles of that type. 

Naively, we might want to fill our trig tables with angles e such that e (measured 
in degrees), sin e ,  and cos e are all rational. But the Governor's Theorem-still to be 
proved-tells us that there are no such e 's with 0 < e < 90° . So we should include 
more angles in our trig table. 

For example, our standard trig table includes familiar friends like 45 degrees, for 
which sine and cosine are both 1 I -/2, which is not rational. Rather, 1 I -/2 is algebraic, 
i .e . ,  there is a nonzero polynomial f (x) with rational coefficients such that f ( 1  I -/2) = 
0, namely f (x)  = 2x2 - 1 .  

We might ask: What rational angles are such that sin e and cos e are algebraic? The 
hope would be that these angles e would make up a nice trig table. But this doesn' t  
work, because sin e and cos e are always algebraic when e is rational. Gauss said that 
this was well known in Article 337 of his Disquisitiones [ 4] , and indeed we can see it 
by using multiple-angle formulas (or reading the rest of this section). 

So we need a finer notion of "nice" to pick out angles e that one would want in a trig 
table. Recall that the degree of an algebraic number is defined to be the minimum of 
deg f (x)  as f (x) varies over the nonzero rational polynomials such that f (r) is zero. 
For example, rational numbers have degree 1 whereas 1 I -/2 and .J3 12 have degree 2. 

Write e as 360k In  where k and n are relatively prime natural numbers. The famous 
number-theorist D.H. Lehmer proved in [10] : 

LEHMER ' S  THEOREM . /fn 2: 3, then the degree ofcos(360kln) is ¢ (n) l2. Ifn is 
positive and =f. 4, then the degree of sin(360kln) is 

{ ¢ (n)  ifgcd(n , 8) = 1 or 2 
¢ (n)l4 ifgcd(n , 8) = 4 

¢ (n)l2 if gcd(n , 8) = 8 .  

In the theorem, the symbol ¢ denotes Euler's ¢-function. Recall that ¢ ( 1 )  is defined 
to be I and that ¢ (mn) = ¢ (m)¢ (n)  for relatively prime numbers m and n .  Finally, 
for p a prime we have: 

The first few values of ¢ are given by the table 

n 1 2 3 4 5 6 7 8 

¢ (n)  1 1 2 2 4 2 6 4 

Let us check Lehmer's Theorem on 30 degrees. We can write 30 as 3601 1 2. The 
theorem says that cos (30) = .J312 has degree ¢ ( 1 2)12 = 2-which is true-and that 
sin(30) = 1 12 has degree ¢ ( 1 2)14 = 1-which is also true. Also, the excluded values 
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of n are genuine exclusions . For cosine, we exclude n = 1 ,  2, corresponding to mul
tiples of 1 80 degrees .  The cosines of such angles are 0 or ± 1 ,  hence of degree 1 (and 
not 1 /2). For sine, we exclude n = 4, corresponding to 90 and 270 degrees,  for which 
sine is 0, hence of degree 1 (and not 1 /2). 

Note that Lehmer's Theorem implies Gauss's assertion that sin e and cos e are al
gebraic for every rational angle e .  

Note also the asymmetry between sine and cosine i n  Lehmer's Theorem. The 
author finds this unsettling, in light of the complementary angle formula sin e = 

cos (90° - e) .  
We apply Lehmer's Theorem to draw up a table. In  each row of  the following table, 

we specify a degree d (less than 8). For each degree, we list the denominators n such 
that sin(360k/n) has degree d or cos (360kjn)  has degree d. To construct such a table, 
one applies Lehmer's Theorem to all the natural numbers n such that sine or cosine of 
360/n can have degree at most 7; finding the list of such n 's is an exercise with the 
definition of </> given above. (Lehmer's article gives a similar table, but its entries for 
sine are incorrect because the theorem for sine is not stated correctly there; Niven's 
book [11] has the correct version of the theorem-reproduced above-but no table. 
Also, in Lehmer's cosine table there is a 36 that should be a 30.) 

TA BLE 1 :  Denom i nators n such that s in  3 60k/ n or  
cos  3 60kj n have degree d < 8.  

d sine cosine 

1 1 ,  2, 4, 1 2  1 ,  2 ,  3 ,  4 ,  6 
2 3 , 6, 8 , 20 5 ,  8, 1 0, 1 2  
3 28, 36 7 , 9, 14, 1 8  
4 5, 1 0, 1 6, 24, 60 1 5 ,  1 6, 20, 24, 30 
5 44 1 1 , 22 
6 7 , 9, 14 , 1 8 , 52, 84 1 3 , 2 1 , 26, 28, 36, 42 
7 none none 

The d = 1 row of Table 1 says that-for e a rational acute angle-sin e is rational 
if and only if e is 30 degrees, and cos e is rational if and only if e is 60 degrees. (For a 
proof of this using trig identities, see [13] . ) This proves the Governor's Theorem. 

The reasoning in the previous paragraph also shows that no rational angle has a sine 
of 3/4. This answers the question posed in the introduction, albeit in an unsatisfying 
way. 

Now that we understand how to apply Lehmer's Theorem, we prove it. Following 
the stated goal of this paper, we use Galois theory. A proof that appears more concrete 
but is really the same can be found in Section 3 .4 of [11 ] .  We write e for 360kj n .  

Put 

z : = e2rrik/n = cos e + i sin e ,  

a primitive nth root o f  unity i n  the complex numbers . Then 

z + z 
cos e = -- , 

2 

where z denotes the complex conjugate of z . Since k and n are relatively prime, there 
is some natural number .e such that k.e is congruent to n - k (mod n ) .  Therefore, 

z = e-2rrik/n = (e2rrik/n )l = l .  
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In particular, z belongs to Q(z) . (Alternatively, we can remember the fact that Q(z) is 
a Galoi s  extension of Q.) Now z satisfies the equation 

z2 - 2z cos e + 1 = 0 

because zz = 1 ,  so the dimension of Q(z)  over Q(  cos e) is 1 or 2. On the other hand, 
these two field extensions are not the same: z cannot belong to Q(cos e) because z 
is not a real number (because n is at least 3) and Q(cos e )  consists of real numbers . 
That is, the dimension [Q(z) : Q(  cos e ) ]  is 2. Since the dimension of Q(z) over Q is 
¢ (n)-see e.g. [2, § 1 3 .6 ,  Cor. 42]-we obtain: 

cos e . -
[Q(z) : Q] ¢ (n) 

[Q( ) . Q]  -
[Q(z) : Q(cos e) ]  2 

This proves the part of Lehmer's Theorem regarding cosine. 
The result for sine can be derived from the result for cosine using the complemen

tary angle formula 

sin ( 360�) = cos ( 360� - 90) = cos ( 360 
4\: n ) . 

This part of the proof is identical to the one on p. 38  of Niven's book, so we just sketch 
it. First, observe that since n is not 4, the fraction (4k - n)/ (4n) ,  when put in lowest 
terms, has denominator at least 3, so we may indeed apply the cosine result. Next, 
divide the proof into cases depending on the highest power of 2-say 2e-dividing n .  
For example, i f  e = I ,  then ( 4k - n) / ( 4n) i n  lowest terms has denominator 2n , and 
sin(e) has degree ¢ (2n) /2. But n = 2m for some m odd, so 

¢ (2n) 
= 

¢ (4m) 
= 

¢ (4)¢ (m) 
= ¢ (m) = ¢ (l)¢ (m) = ¢ (n ) .  

2 2 2 

The remaining cases are left to the reader. This completes the proof of Lehmer's The
orem. 

For later use, we note that Q(z)  is Galois over Q with abelian Galois group, as 
we learned in our Galois theory course. Consequently, every subfield of Q(z)  is also 
Galois over Q with abelian Galois group, including Q(cos e) and any subfield of it. 

Remark. The proof of the cosine part of Lehmer's Theorem amounts to the obser
vation that Q(cos e) is the maximal real subfield of Q(z) , i .e . ,  the intersection of Q(z) 
with the real numbers . 

An expanded trig table 

Our motivation is to answer the question: Why does the standard trig table include 
exactly the angles 0, 30, 45 , 60, and 90 degrees? If you want to pick angles to put in a 
trig table and you know Table 1 ,  it would make sense to include exactly those rational 
angles e such that sin e and cos e both have degree at most d for some choice of d. If 
you do this with d = 2, you find n = 1 ,  2, 3, 4, 6, 8, 1 2  corresponding to angles that are 
multiples of 360, 1 80, 1 20, 90, 60, 45, or 30 degrees .  Surprise ! You find the standard 
trig table. This explains why the standard trig table includes exactly the angles that it 
does. 

Taking d = 3 ,  we find no new angles by Table 1 .  
Taking d = 4, we find new denominators n = 5 ,  1 0, 1 6, 20, 24, corresponding to 

angles that are multiples of 72, 36, 22 4 , 1 8 , and 1 5  degrees respectively. An expanded 
trig table including these angles is given in Table 2 below. 
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TA BLE 2 :  A n  expanded tr ig tab l e  i n c l ud i ng 72 a and  a l l  
rationa l  ang les (} between o a  a n d  45° such that s i n  fJ 
and cos fJ have degree ::: 4 . 

(} (in degrees) sin (} cos (} 

0 0 1 

1 5  
-1  + .J3 1 + .J3 

2../2 2../2 

1 8  - 1  + ,J5 J5 + -JS 
4 2../2 

221 J2 - ../2 J2 + ../2 
2 2 2 

30 1 /2 .J3!2 

36 
J5 - ,J5 1 + ,J5 

2../2 4 

45 l j../2 1/../2 

72 J5 + ,J5 - 1  + ,J5 
2../2 4 

This table warrants some remarks. First: How does one compute sin () and cos () 
for the new angles () ?  The only difficult one turns out to be () = 72a ; once sin 72° 
and cos 72° have been computed, all the other entries can be filled in using the half
angle and complementary-angle formulas and known entries from the standard table. 
To compute sin 72° and cos 72° , we follow the proof of Lehmer's Theorem and put 

z := cos 72a + i sin 72a = e2rri/S . 

Note that z5 = 1 ,  i .e . ,  z is a 5th root of unity. Since 5 is of the form 22 1 + 1 ,  it is 
a Fermat prime, and Gauss gave a general method for computing pth roots of unity 
for such primes p, see [4, §VII] , [3, § §20-27] , or [17, Ch. 1 2] .  An explicit form of 
z can be found in almost any book on Galois theory where this method is presented. 
(Alternatively, one can use trigonometric formulas as in [6, pp. 39, 40] or geometry as 
in [1 ] . )  

Second, some of the entries are noteworthy. For example, the half-angle formula 
gives 

. 1 5a 
; 1 - cos 30a 

sm = 
2 

but in the table we find ( - 1  + .J3) /2../2. Which is it? Indeed they are equal, since 
they are positive real numbers whose squares agree. The second version is in the table 
due to the author's general aversion to "nested" square roots . 

We can similarly calculate sin 22! a by applying the half-angle formula to cos 45a 
and finding 
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This nested expression is the one listed in the table. This is not due to some lazi
ness on the author's  part, but rather to mathematical reality: this expression cannot 
be rewritten to eliminate the nesting. Indeed, in the previous paragraph, the field 
Q((- 1 + ,J3)j2./i) is (exercise ! ) the same as Q(./2, ,J3) ,  a Galois extension of Q 
whose Galois group is the Klein four-group (exercise ! ) .  Here the field Q(vh - ./2/2) 
is also a Galois extension of Q of degree 4, but with Galois group Zj4Z. (This as
sertion is Exercise 14 in § 14 .2 in [2] . ) The reader who verifies these assertions about 
the Galois groups will see that they imply that sin 22� o cannot be rewritten so as to 
remove the nested square root. 

Bibliographic references. Hoehn [5] gives a nice geometric derivation of sine and 
cosine for the angles 1 5 °  and 75° .  Generally, one can find sin 8 and cos 8 whenever 8 
is an integer multiple of 3 degrees once one knows the values for 8 = 36° and various 
trig identities, see e.g. [18] . For the general question of unnesting square roots, see [9] .  

Can we expand the table a little further ? 

Continuing the procedure from the previous section, we could consider angles 8 such 
that sin 8 and cos 8 have degree ::::; 5. By Table 1 ,  no new angles 8 are found. (In 
general, for every odd number d ::::: 3, the angles 8 such that sin 8 and cos 8 have degree 
::::; d are exactly the same angles as those whose sine and cosine have degree ::::; d - I .  
Proving this claim is an exercise combining Lehmer's Theorem and the definition of <P 
which we leave to the reader.) 

If we consider those angles with degree ::::; 6, there are lots of new angles, but also 
an ugly phenomenon. Consider the case n = 18 ,  corresponding to the angle 8 = 20o . 
Table I says that cos 8 has degree 3 ,  2 and it is a root of the polynomial 8x3 - 6x - I ,  as 
can be seen by the triple-angle formula. (This fact is familiar from a course on Galois 
theory, because it is part of the standard proof that the angle 20° cannot be constructed 
with straightedge and compass .)  The graph of this polynomial is 

It clearly has three real roots . However, Cardano's formula for finding the roots of a 
cubic polynomial gives the three seemingly complex roots3 

x = f l + r-3  j 1 - r-3 .  1 6  + 1 6  
2We only include zoo at the degree :<:: 6 stage because sin(20°) has degree 6. 
3 Each complex number has three cube roots, so the displayed expression a priori gives 9 complex numbers. 

The roots of the polynomial 8x3 - 6x - I are the values of x where the sum of the two cube roots is a real 
number. 
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This is an example of the famous "casus irreducibilis" of the cubic formula, and it 
is well known that one cannot avoid using complex numbers in writing down these 
roots (see e .g . ,  [2, § 14.7] or keep reading this article) . Since cos(20°) is so ugly, we 
shouldn' t include it in our table. 

In fact, this example is typical . Write e = 360kjn where k and n are relatively 
prime integers. We have: 

THEOREM . The numbers cos e and sin e can be written using only rational num
bers, addition, subtraction, multiplication, division, and roots of positive numbers if 
and only if cp (n) is a power of2. 

In the example of 20 degrees above, ¢ ( 1 8) is 6, which is not a power of 2. When we 
prove the theorem below, we will have in particular proved that cosine of 20 degrees 
cannot be written using only field operations and roots of positive numbers. 

The theorem says that the only candidates for angles e to be added to our trig table 
are those e = 360kjn where ¢ (n )  is a power of 2 .  Such natural numbers n are pre
cisely those n such that regular n-gon is constructible with compass and straightedge
proved by Gauss and Wantzel. Gauss listed the 38 such n :=: 300 at the end of [4] , and 
in principle the list is known for n < 2222 + 1 (approximately 2 x 1 01 2626 1 1  ), see [12, 
Seq. A00340 1 ] .  

In the next section, we will investigate what new entries could b e  added to our trig 
table. But first we prove the theorem stated above. Write E for the field consisting 
of real numbers that can be written as in the statement of the theorem, i .e . ,  that can 
be written using only rational numbers, addition, subtraction, multiplication, division, 
and roots of positive real numbers . 

We first prove the "if' direction, i .e . ,  we suppose that cp (n) is a power of 2. This is 
the easier implication, and the proof proceeds just as for constructibility of a regular 
n-gon. By the observation just after the proof of Lehmer's Theorem, the extension 
Q( cos e) of Q is Galois with abelian Galois group of order ¢ (n) /2. Therefore, there is 
a chain of fields 

Q = Ko C K1 C · · · C Kr = Q(cos e )  
such that each Ki+ 1  is a 2-dimensional extension of  Ki . lt follows that Ki+ 1 i s  obtained 
from Ki by adjoining the square root of some element ai E Ki . Since Ki+ 1 is contained 
in Q(cos e) and hence in ffi., the element ai is positive. We conclude that cos e belongs 
to E. The pythagorean identity sin2 e + cos2 e = 1 implies that 

sin e = ±J1 - cos2 e ,  
hence sin e also belongs to E.  This completes the proof of the "if' direction. 

To prove the more difficult "only if' direction, we suppose that cp (n) is not a power 
of 2, i .e . ,  is divisible by an odd prime p. Note that this implies that n is at least 7. For 
sake of contradiction, suppose that cos e or sin e belongs to E.  In the latter case, the 
pythagorean identity implies that cos e belongs to E, so in any case we have that cos e 
belongs to E .  Lehmer's Theorem gives that p divides the dimension of Q(cos e )  over 
Q. We observed after the proof of that theorem that Q(cos e) is Galois over Q with 
abelian Galois group, so there exists a Galois extension K of Q contained in Q( cos e )  
such that the dimension of  Q(  cos e )  over K i s  p .  

Since cos e belongs to E, there is a tower of  fields 
Q = Fa C F1 C · · · C Fr C ffi. 

such that Fr contains cos e and each Fi+ l is obtained from Fi by adjoining a real n i th 
root of some positive ai E Fi .  By inserting additional terms in this tower if necessary, 
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we may assume that n; is a prime number for all i .  Fix i such that the compositum 
K F; does not contain cos 8 ,  but K Fi+ i does . 

/ I n; 
Q(cos B )  K F; 

The field K F; (cos 8)  properly contains K F; and (since K is Galois over Q) the 
dimension of K F; (cos 8) over K F; divides the dimension of K (cos 8) over K ,  which 
is the prime p. So K F; (cos 8)  has dimension p over K F; .  On the other hand, 
K F;+ t  = K F; ('!.!/(ii) is a proper extension of K F; of degree dividing the prime n; ; 
since K F; (cos 8) is contained in K Fi+" we conclude that n; = p and 

K F; (cos 8)  = K Fi+i = K F; ( lj{ii) 
is Galois over K F; . It follows that K Fi+ i contains a full set of pth roots of unity. 
But this is impossible because p is odd and K Fi+1 consists of real numbers. This 
contradicts the assumption that cos 8 or sin 8 belongs to E and completes the proof of 
the theorem. 

Remarks. (i) One reader of this paper asked what the correct theorem would be if 
the word "positive" were removed from the statement of the theorem. Or, to restate 
the question: What rational angles 8 have values of cos 8 and sin 8 that are solvable by 
radicals? In the proof of Lehmer's Theorem, we saw that cos 8 generates an abelian 
extension of Q, so the answer is "all rational angles 8" by Galois 's criterion. 

(ii) The proof of the difficult direction of the theorem did not involve the result 
about constructibility of regular n-gons, despite the similarity in the two statements. 
Indeed, the restriction that ¢ (n)  be a power of 2 arose here because ¢ (n) is-up to 
multiplication by a power of 2-the degree of a real Galois extension Q (cos 8) of Q 
obtained by taking roots of positive real numbers. This implied that Q (cos 8)  can be 
obtained by adjoining only square roots, hence that ¢ (n ) is a power of 2. In contrast, in 
the theorem about n-gons, you begin with the hypothesis that you can only take square 
roots . 

(iii) A more general version of the proof above is given in [7] or with Exercises 
1 2-14 in § 14.7 of [2] . Our proof is much simpler because the number that we assume 
belongs to E-namely, cos 8-generates a Galois extension of Q. 

What the next few numbers look like 

By the previous section, our trig table should only include angles 360kfn where ¢ (n) 
is a power of 2. If we want to expand Table 2, how should we do it? 
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We have already considered the denominators n = 1 ,  2, . . .  , 6, 8 ,  10 ,  1 2 , 1 6 , 20, 24. 
The smallest natural number n not in that list and with ¢ (n)  a power of 2 is n = 1 5 ,  
corresponding to angles that are multiples of  24 degrees .  To compute sin 24 o and 
cos 24° , we can use the familiar trick from the construction of regular n-gons. Namely, 
factor 1 5  as 3 · 5 and recall that we know e2rrif3 

and e2rri/S 
because we know the values 

of sine and cosine for 1 20° and 72° , so we can explicitly compute 

e2rrif3 . e2rrif5 = e2rri · 8/ 15 . 

Moreover, 2 · 8 = 1 5  + 1 ,  so 

Performing these computations and extracting the real part, we find: 

The next n for which the corresponding e does not appear in Table 2 is  n = 17 ,  
corresponding to  the angle e = 2 1 f-7 o .  Seventeen is a Fermat prime, and the values 
of sine and cosine can be computed by Gauss's algorithm. Gauss himself gave the 
following explicit formula for cos e in Article 365 of [ 4] : 

l 6 cos 2 1
1

3

7 
o 

= - 1  + .Jl7 + /34 - 2.J11 

+ 2J1 7  + 3.Jl7 - /34 - 2.Jl7 - 2)34 + 2.Jl7 

These numbers look pretty ugly ! Another strategy is to apply a friendly trig identity 
like a half-angle formula to entries in the table. Doing this with 1 8  degrees ,  we find for 
example that 

The reader is encouraged to continue along these lines until their personal limits of 
expression complexity are attained. 

Summary 

We observed that we can construct a trig table for each natural number d by including 
precisely those rational angles e such that cos e and sin e are algebraic of degree at 
most d. For d = 1 ,  the table only included multiples of 90° . For d = 2, we got the 
standard trig table consisting of multiples of 30° and 4SO .  For d = 4, we found a 
larger table, and we exhibited a portion of it in Table 2. Unfortunately, for d 2:: 6, it is  
impossible to write the cosine of some angles without using complex numbers . Further 
investigation revealed that, without using complex numbers, we can only write down 
cos e and sin e if ¢ (n) is a power of 2, where n is the denominator of e .  The proof 
of this last fact was different from the similar-sounding result about constructibility of 
regular n-gons with straightedge and compass .  

Acknowledgments. I thank Steve Edwards, Julia Garibaldi, Fred Helenius, and a n  anonymous referee for their 
comments and for pointing out references. 
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Introduction 

Two infinite products for :;r ,  Wallis 's  and Vieta's ,  are well-known and striking (and, 
surprisingly, related-see e.g. [1]) :  

2 

2 

2 · 2 4 · 4 6 · 6  2n · 2n 

1 · 3 3 · 5 5  · 7 (2n - 1 )  · (2n + 1 )  

2 2 2 2 

�h+�h+h+��+h+h+� 

(Wallis) 

(Vieta) 

While both formulas are mysterious and beautiful, the convergence of Wallis ' s  for
mula is painfully slow. Vieta's  is much better, although Vieta himself was able to 
approximate :;r only to 9 digits past the decimal point in 1 593 .  In this article, we'll 
describe a way to accelerate the convergence of Vieta that is completely accessible to 
calculus students, and how we stumbled upon it through experimentation. We were 
somewhat astonished when we used our accelerated (Vieta) to approximate :;r to over 
300,000 digits . 

Derivations of (Wallis) and (Vieta) appear in many places;  we briefly highlight a 
few. Typical derivations of (Wallis) often involve comparing the results of integrating 
sin2n+ I (x) and sin2n (x) by parts, as in calculus texts such as [2] . Other derivations 
require the use of the infinite product for sin(z ) ,  which is not fully accessible to the be
ginning student (although streamlined proofs exist, e .g . ,  [3] ) .  The main disappointment 
with (Wallis) is that the convergence is slow. For instance, doubling the partial product 
of the first fifty terms yields an approximation to :;r of 3 . 1 2607 . . .  , not very satisfying 
(i .e . ,  accurate to within 1 .6 · 1 0-2) .  A faster product for :;r which is an acceleration of 
(Wallis) (and which uses Euler's tranformation of series) appears in [4] . 

By contrast, Vieta's formula is easier to derive, even to those with a mathemati
cal sophistication at the level of beginning calculus .  Vieta's  original argument is re
produced in translation in [5] ; an example of a recent examination is [6] . A typical 
derivation today uses trigonometric identities, and the sole calculus fact that the limit 
as u ---+ 0 of sin(u)ju  = 1 :  

sin(x) = 2 cos (�) sin (�) 
= 22 cos ( �) cos ( �) sin ( �) 

2 0 1  
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= 23 cos (�) cos (�) cos (i) sin (i) 

= 2n (il cos ( xk )) sin ( xn) 
k=l 2 2 

Divide each side by x ,  then take the limit as n ---+ oo to get 

sin(x) (Iloo ( x )) 1. sin(x/2n ) floo ( x ) -- = cos - Im = cos - . 
X 2k n->oo xj2n 2k 

k= l k= l 

Set x = n j2, then repeatedly apply the half-angle formula 

cos (�) = J l + c;s (e )
; 

taking the reciprocal yields (Vieta) . 

( 1 )  

Unlike the convergence of (Wallis), doubling the partial product of the first fifty 
terms of (Vieta) approximates n accurate to about 30 digits (i .e . ,  surprisingly accu
rate to within 1 . 1  · 1 0-30) .  In this article we' ll see how to bound carefully the error 
in (Vieta) , and use the form of the error term to accelerate dramatically the conver
gence of the partial products. For instance, from just the first fifty terms of (Vieta), we 
will obtain n accurate to over 900 digits (i .e . ,  accurate to within 3 . 3  · 10-908 ) .  From 
fewer than 1 200 terms, we found n to over 300,000 digits . And all this comes from an 
idea familiar to many, although in a rather different context. Namely, our acceleration 
algorithm is (arguably) one of the purest examples of exploiting a certain form of er
ror term--essentially the same form that is embodied in the widely used Richardson 
extrapolation and Romberg integration algorithms. 

Before we proceed, you may wonder how (Vieta) compares with familiar series 
expansions for n, such as Gregory 's series 

and 

4 4 4 k- 1 4 
JT = 4 - - + - - - + · · · + (- l )  -- + · · ·  

3 5 7 2k - 1  

n2 1 1 1 1 
- = 1 + - + - + - + · · · + - + · · · . 
6 4 9 1 6  n2 

Proofs of the latter without using Fourier series are increasingly accessible to calcu
lus students, as in [7] . The most powerful acceleration methods for such sums have 
errors comparable to those arising from use of the Euler-Maclaurin summation for
mula, E:':n f (i )  = fnoo f (u)du + f (n )/2 - E�1 [B2d(2k) ! ]j2k- I (n) ,  where the Bj 
are the Bernoulli numbers and f (x)  = 1 jx2 . Note that Euler-Maclaurin is also in
creasingly accessible to beginning students, as in [8] . To illustrate its implementation, 
the partial sum of the first fifty terms of -\ is within .02 of the value of the infinite se-n 
ries ,  a fairly unsatisfying result. But without too much trouble, we can obtain n to 100 
digits from Euler-Maclaurin. Using an extra 55 correction terms, which involve the 
Bernoulli numbers B2 through Buo and derivatives of f(x) = l jx2 through the 109th 
derivative, the Euler-Maclaurin estimate is accurate to within 1 .6 . 10- 100

• While im
pressive, compare this with the 30-digit accuracy from the first fifty terms of (Vieta) , 
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as cited above. Moreover, we will see that (Vieta), suitably accelerated, yields error 
less than 1 0-907 using fifty terms. I 

Convergence and accelerated convergence of Vieta. Let Pn denote the product of 
the first n terms in (Vieta), i .e . , Pn = l j [cos (n/4) . cos (n/8) . .  · cos (n/2n+ I ) ] .  The 
key observation is that ( 1 )  applied to X = 7r /2 yields Pn = 2n sin(Jr j2n+ I ) .  So, by the 
Maclaurin series for sine, 

7r 7r ( 7r 7r3 ( - l )m7r2m+ l 

2 - Pn = 2 - 2n 
2n+ I -

3 ! (2n+ l ) 3 + . . .  + 
(2m + 1 ) ! (2n+ l ) 2m+ l  

7r 7r 7r 3 (- l )m+ I n 2m+ I 2n 
= 2 - 2 + 

3 !234n + . . .  + 
(2m + 1 ) !2n+ l (2n+ l ) 2m + . . .  

Thus we have 

- . . .  ) 

( - l )m+ l 7r2m+ l  
where k = -'----'-------m 

22m+ l (2m + 1 ) ! 

Explicitly k1 = n 3 /48 = 0.64596 . . .  , k2 = -1r5 /3840 = -0.07969 . . .  , etc . 

(2) 

Before proceeding, observe that log 1 0 4 = . 602 . . .  so that (2) immediately hints 
that jn - 2pn l "' w--6n , i .e . ,  2pn approximates 1r to about . 6n digits . To illustrate, 
1r - 2p50 � 1 .02 · 1 0-30 and 1r - 2p100 � 8 .04 · 1 0-6 1 . A glance at Table 1 will show 
how uncanny the estimate of .6n digits of accuracy really is .  This phenomenon is 
explained as follows. Instead of using the Maclaurin series for sin(x ) ,  we ' ll use Tay
lor's theorem with remainder: sin(x) = x - x3 j3 ! + x5 cos(c) /5 ! , where c is between 
0 and X .  Applying this to Pn = 2n sin(Jr/2n+ l ) ,  similar algebra that led to (2) yields 
jJr - 2pn l = 2 J ki i ·  4-n j l  + cos(cn )7r 2/ (4 . 20 . 4n ) J ,  i .e . ,  jJr - 2pn l � 1 .292 . 4-n j l + 
cos(cn ) . l 234/4n j ,  so jJr - 2pn l ;S 1 . 3 . w--6n . 

Next, we use (2) to develop our acceleration algorithm. It follows almost immedi
ately : 

1r k1 kz k3 k4 
2 = Pn+ I + 

4n+ I + 
1 6n+ l 

+ 
64n+ I + 

256n+ I + . . .  (3) 

thus multiplying (3) by four yields 

1r k1 kz k3 k4 
42 = 4Pn+I + 4 

4n+ l  + 4
1 6n+ l + 4 

64n+ l + 4 
256n+ I + • • . (4) 

so subtracting (2) from (4), then dividing by three yields 

where 12 = -4k2j l 6, 13 = -20k3j64, l4 = -84k4/256, and in general 

lj = ( (4 - 4j )kj / (3 · 4j ) for j :::=: 1 .  

But then 

(5) 

(6) 

1 Note that since the Euler-Maclaurin approximation uses 1 05 terms, rather than just 50 ,  a comparison to 
accelerated (Vieta) using 1 05 partial products rather than 50 might be more fair. Remarkably, accelerated (Vieta), 
applied to the first 1 05 partial products, yields 7f to within 7 .5 . 1 0-37 10

• 
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Multiplying (6) by sixteen, then subtracting (5), and dividing the result by fifteen yields 

2 

where we have defined rn = 
4Pn+� -Pn and mj = ( ( 1 6 - 4j ) lj / ( I 5  · 4j ) for j :::::_ 2. 

As an example, 

(7) 

1 0  3 . 1 4 1 59 1 422 . . .  

2rn = 2(4Pn+ l - Pn )/3 
3 . 1 4 159265358975700 . .  . 

2 ( 1 6rn+ I  - rn ) / 1 5  

3 . 1 4 1 5926535897932384625 1 6  . . .  

1 1  3 . 1 4 1 592346 . . .  

1 2  3 . 14 1 592577 . . .  

3 . 1 4 1 59265358979097 . .  . 

where we underlined those digits that match the digits of n .  More precisely, the tab
ulation above shows error 7.70 . . . · 10-8 for 2PJ2 , improved to error 1 .268 . . .  · 1 0-22 
for the rightmost entry above. 

Repeating this process produces a recursive sequence of approximations to n /2 that 
are increasingly accurate. Define 

V: _ 4k Vk- I .n+ I - Vk- I .n 
k ,n - 4k - 1 

(8) 

with Vo,n  = Pn (so e.g. , rn = V1 , n ) . We earlier noted that (2) implies In - 2pn I � 

w-·6n . The constants ki tend to zero as n -+ oo ;  in (5) the li are even smaller; and in 
(7) the mi are smaller stilL Thus (6) and (7) lead to the more general 

ACCELERATION THEOREM . Let Pn denote the partial product of the first n terms 
in (Vieta), and let Vk,n be the accelerations as defined by (8). Then 

In - 2Vk,n l ;S 2Ck lo- 6Ck+ I )n 

where ck tends to zero as k increases: 

1 1 1 1 n2k+3 
ck < 4 - 1 42 - 1 43 - 1 

· · · 4k - 1 22k+3 (2k + 3) ! · 

Sketch ofproof Re-express (5) as n/2 - rn = l2/ I 6n + · · · ; then I n - 2rn l ;S 
2 1 12 1 · w- I .2n . Substituting the form for 12 , and recalling the notation that rn is V1 ,n , 
we see that I n - 2VI ,n l ;S 2Cl . w- l .Zn where cl = 1 (4 - 42) / (3 . 42) l l k2 l , i .e . ,  

C1 = 1 �4'i2 1 2�� • . Similarly, if we re-examine (7) and express In - 2V2,n l in terms 
of m3 , then substitute the form for m3 , we have In - 2V2,n l ;S 2C2 Io- I .sn where 

1 6-43 4-43 . 1 6-43 4-43 7T 7 . 
c2 = 1 1 5 -43 I I  J .43 l l kJ I , l .e . ,  c2 = 1 1 5 -43 I I  J .43 I . z77! '  These examples With k = 1 and 
k = 2 illustrate how, more generally, the inequality for ck arises in the theorem. 

As an application of the acceleration theorem, if k = n = 35 then the Theorem 
yields c35 < 3 . 39 . w-47 1 , which implies that v35 , 35 should be accurate to more than 
.6 · 35 · 36 + 47 1 digits, i .e . ,  to more than 1 227 digits. We tabulate some values in 
Table 1 .  

Finally, we note that the approach of successively eliminating terms in the error 
expansion (2) as implemented in (3)-(8) is strongly reminiscent of Richardson ex
trapolation (used to improve computations in numerical differentiation) and Romberg 
integration (used to improve the trapezoidal rule in numerical integration)-see, e .g. ,  
[9] .  

Thus, remarkably, Vieta's venerable formula can produce hundreds of  thousands of 
digits of n .  
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TA BLE 1 

k n 7f - 2pn 7f - 2Vk.n 

0 50 1 .0 1 9 1 5 1 6  . . . . 10-30 1 .0 1 9 1 5 1 6  . . . . 1 0-30 
25 25 1 . 1474627 . . . . 10- 1 5 1 . 1 375426 . . . . 1 0-646 

49 1 0 .3 1 3 1 6552 . . . . 1 0° 3 .2232 1 74 . . .  - 1 0-90s 
0 70 9 .269 1 302 . . . . 10-43 9 .269 1 302 . . . . 1 0-43 

35 35 1 .0943057 . . . . 1 0-2 1 1 . 1 859835 . . . . 10- 1 229 
35 36 2.7357643 . . . . 1 0-22 2 .5 1 14 178  . . . . 1 0- 1 25 1 
35 37 6. 8394 109 . . . . 1 0-23 5 .3 1 8 1 342 . . . . 10- 1 273 
35 38 1 .7098527 . . . . 10-23 1 . 1 26 1587 . . . . 10- 1 294 
69 1 0 .3 1 3 1 6552 . . . . 100 3 . 60 1 6998 . . . . 10- 17 1 2 
0 100 8 .0396888 . . . . 10-6 1 8 .03968889 . . . . 1 0-6 1 

50 50 1 .0 1 9 1 5 1 6  . . . . 1 0-30 4.228 1 275 . . . . 1 0-2447 
99 1 0 .3 1 3 1 6552 . . . . 10° 1 . 3 1 24285 . . . . 1 0-337s 

572 600 7 .503 149 1  . . . . 10-362 1 .6782 1 95 . . . . 1 0-30s44 1 

Numerical investigations (or " How this all got started") 

The path we actually took to discover (2) was circuitous, but may be of interest to those 
doing numerical work-or those who just like to number-crunch. And we believe that 
it is quite in the spirit of [10] ; numerical investigations of convergence may lead to 
interesting acceleration algorithms.  The rapidity with which a series L bn converges 
is determined by how rapidly the terms bn being summed tend to zero. Similarly, the 
rapidity with which an infinite product fl an converges is determined by how quickly 
the terms an being multiplied tend to one. Initially we examined the actual numerical 
values of the terms an in the product: 

7r 2 = ( 1 .4142 1 35 . . .  ) . ( 1 .0823922 . . .  ) . ( 1 . 0 1959 1 1 . . .  ) . ( 1 .0048385 . . .  ) 

· ( 1 .00 1 2055 . . .  ) · ( 1 .0003012  . . .  ) · ( 1 .0000753 . . .  ) (Vieta) 

Our first observation is how the deviations from one of each factor in (Vieta) vary: each 
factor appears to be about 1 j 4th as far away from one as the previous factor. Closer 
inspection of a5 , a6 , a7 , and as is worthwhile: 

a5 = 1 .00 1 205996470392602 . .  . 

a6 = 1 .00030 127204 1 30 1976 . .  . 

a7 = 1 .00007530383 1 095445 . .  . 

as = 1 .00001 882507 1 7755 1 3  . .  . 

Indeed, the deviation of ak+ 1 from one does appear to be about 1 /4th as large as the 
deviation of an from one: 

(a6 - 1 )  
dr5 = = 0.2498 1 1 7 1 0646 1 34 . . .  

(a5 - 1 )  

(a7 - 1 )  
dr6 - = 0.249952935459968 . . .  

(a6 - 1 )  

(as - 1 )  
dr7 = = 0.249988234352289 . . .  

(a7 - 1 )  
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Above, we define the deviation ratio drn = (an+ I - 1 ) / (an - 1 ) .  Thus, each factor an 
appears to be of the form an = 1 + E/4n-as opposed to, say, 1 + Ejn4 • But examining 
carefully the deviations from this behavior is enlightening. The three ratios dr5 , dr6 , 
and dr7 deviate from .25 by .000 1 88289 . . .  , .000047064 . . . , and .00001 1 765 . . . .  
So, surprisingly, they too vary by about a factor of approximately 1 /4; specifi
cally, (dr6 - 1 j4) j (dr5 - 1 /4) = . 24995858 . . .  , while (dr7 - 1 j4) j (dr6 - 1 /4) = 
. 24998964 . . . .  (And these ratios have their own deviation from 1 /4, which, also 
surprisingly, varies by a factor of approximately 1 /4.) Thus, each factor's  form, em
pirically, seems to be refined to 

(9) 

In fact, from high-precision values of an one can compute 4n (an - 1) for large n and 
thus empirically find E 1 ; then 1 6n (an - 1 - E J /4n ) can be computed numerically to 
find E2 ; and so on. Such computations lead to: 

E 1  = 1 .2337005501 36 1 69 . .  . 
E2 = 1 .268347539505240 . .  . 
E3 = 1 .272672326564530 . .  . 
E4 = 1 .273 1 75480652605 . .  . 
E5 = 1 .273232382729394 . .  . 

It appears that the Ek are converging. Since an = sec(n 12n+ I ) ,  via Taylor series we 
deduced 

I Ezn ln 2n 
E - -----:-::-::-n - (2n ) ! 22n , 

where the Em are the Euler numbers2 (which are not always positive in some conven
tions). From known asymptotics, I E2n l � 8.../iilii(4nje)2n ; combined with Stirling's 
formula, we deduced En � 4/n . We emphasize that (9) would not have been discov
ered had it not been for experimentation. Since there is recurrent interest in nested 
square roots of two (e.g . ,  [11 ] ,  [12]), such numerical observations may be useful in 
their own right. 

The formula in (9) led us to conjecture the form of the result in (2), but without 
realizing an explicit formula for the km . Instead, empirically 

kl = 0.645964097506246 . .  . 
k2 = -0.079692626246 1 67 . .  . 
k3 = 0.00468 1 754 1 353 1 8  . .  . 
k4 = -0.0001 6044 1 1 84787 . . . 

It was straightforward, albeit tedious, to determine the precise relationships between 
k; and E; ; e .g . ,  k1 = (n /6)E 1 , k2 = (n j6) (Ez/5 - 4Et / 1 5) etc.3 Initially we only found 

2 
As an aside, [10, Section 2.2] discusses a curiosity regarding how the Euler numbers arise in Gregory's series 

1r = 4 - 4/3 + 4/5 - 4/7 + . . . . 
3 Some details may help. en = 1r /2 - a ,  · a2 · · · · · an = a , · a2 · · · · · an (tn + l  - I) where tn+ l = an+ I · an+2 · 

· · · , the "tail." So en = Pn Ctn + !  - I) = (1r /2 - en Htn+l  - I) = 1r f2(tn + l  - I) - en Ctn+ l - I ) . Using (0) for the 
factors an+ l • an+2 · etc, in tn+ l •  and collecting factors yields Ctn + l - I) = E J ( 4.� 1 • 1 _

1
1 14 ) + (terms involving 

Ek for k :'! 2) ; from this one obtains that (1r /2) E 1  /3 = k 1 • By keeping track of the E2 terms, k2 is found to be 
(1r /6) (E2 /5 - 4E f I 1 5 ) ,  and so on. Numerically, these relations for k1 and k2 in terms of EJ and E2 were confirmed 
to all digits computed--over 250 digits in each case. 
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k� > kz , and k3 directly in terms of E 1 , E2 , E3 . Since Ek was known in terms of Eu
ler numbers, we saw that k1 = JT3 /48 ; k2 = -JT5 /3840; and k3 = JT7 /645 1 20.  En
tering 48, 3840, and 645 1 20 in Neil Sloane's online integer sequence utility [13] 
yielded just one sequence, whose next term was 1 85794560; so we conjectured that 
k4 = -JT9 / 1 85794560; and this was confirmed, to all digits we had computed for k4 • 
Using the closed form for the denominators obtained from the website, we conjectured 

(- 1 )m+ IJT 2m+ 1 
k = -=-------=----m 22m+ I (2m + 1 ) !

. 

This allowed us to conjecture a sum for the "tail ," i .e . ,  JT /2 - Pn in (2). And this is 
how we discovered the (in hindsight elementary) fact that Pn = 2n sin(JT /2n+ I ) ,  and 
led us to confirm the earlier conjectures. Thus,  numerical investigation circuitously 
led to what eventually became the self-contained exposition in the previous section. 
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Physicists and engineers (and even mathematicians) often find correct solutions to 
problems quickly and efficiently by not worrying too much about mathematical rigor; 
for example, integrating a series term by term without explicitly verifying that the 
conditions under which this is permissible actually obtain. However, it is equally true 
that a lack of rigor can lead to significant errors when solving problems in applications.  
In this note, we examine the derivation of constants used to solve a problem in signal 
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processing, found in the book Applied Analysis, by Cornelius Lanczos .  The derivation 
involves the asymptotic behavior of the sum of rational expressions and makes use of 
an approximation that seems intuitive but is incorrect, leading to a wrong value for one 
of the constants . 

The error we examine appears in a book written by an outstanding mathematician. 
Born in Hungary in 1 893, Cornelius Lanczos was a prolific mathematical physicist 
who made significant contributions in several fields of mathematics and physics, in
cluding quantum theory, relativity theory and numerical analysis [2] . He developed 
a number of powerful methods in applied mathematics, among them a matrix algo
rithm for calculating Fourier coefficients that was essentially the FFf-some 25 years 
before it was rediscovered by Tukey [1 ] .  His publications total over 1 20 papers and 
eight books [4] . One of those books, Applied Analysis, originally published in 1 956, 
has seen a number of reprintings and is still highly regarded among physicists, engi
neers and applied mathematicians as an extremely useful guide to many of the modern 
methods in the field of applied analysis. The authors of this paper were using a 1 988 
republication of that book [3] in their own work in acoustics when they discovered the 
error here examined. 

To understand fully the mathematical context of our problem would take the better 
part of a semester of Fourier Analysis, but we can jump right into the problem itself, 
which is fairly easy to understand (you might decide to first review "big-Oh" and 
"little-Oh" notation by, say, peeking at [5]) :  

We have a complex-valued function <P of  the real variable v that is 0( � )  as  v -+ oo ,  
and empirically determined real constants a 1 , a2 such that 

ia 1  a2 ¢1 (v) = </J (v) - - - -
v v2 ( 1 )  

i s  0 ( ;;\- )  as v -+ oo (note that the 0 ( � )  term i s  imaginary and the 0 ( �)  term i s  real) . 
Some analysis leads to a needed alternate form of ¢� > namely equation 4- 19.9 in [3] :  

A I </J1 (v) = </J (v) - . a +  2JTl v (a + 2n i v) 2 ' 
(2) 

where a, A 1  and A2 are constants . The goal now is simply stated: to derive a, A 1  and 
A2 in terms of a 1  and a2 so that ¢ 1 in (2) remains 0 ( ;;\- )  as v -+ oo .  

There is freedom in  the choice of  a, and we need only understand here that i t  must 
be nonzero. In the derivation of A 1 and A2, the text claims that, for large v, (2) is the 
same as 

A 1 i  A2 + aA 1  
¢I ( v )  = </J (v) + 

2n v 
+ 

(2n v)2 
(3) 

(4- 1 9. 1 0  in [3]) , and so comparing with ( 1 )  and solving, we arrive at 4- 1 9. 1 1  in [3] : 
A 1 = - 2na 1  and A2 = -4n2a2 - aA 1 .  

The claim (3) is rather curious.  It's not difficult to show that taken literally, the claim 
is false: (2) and (3) are definitely not equivalent for nonzero a, that is, the ¢1 defined 
in (2) is not the same as the ¢1 defined in (3) . But the claim was certainly intended to 
mean that, for large v ,  the right side of (3) is an accurate approximation of the right 
side of (2) and so can be substituted for it. The surprise is that this statement also has 
problems, stemming from what is meant by the approximation's being "accurate." To 
understand exactly what the issue is we begin by examining (2) : 

A I 
</J1 (v) - </J (v) = - . a +  2n z v  (a + 2n i v)2 
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and so (2) can be rewritten as 

A1 (a + 2rr i v) 
(a + 2rr i v)2 

2rr A 1 i v  
(a + 2rr i v)2 

2rr A 1 i v 
¢1 (v) = ¢ (v) -

(a + 2rr i v)2 

(a + 2rr i v) 2 

aA 1  + Az 
(a + 2rr i v)2 ' 

aA 1  + Az 
(a + 2rr i v)2 · 

209 

(2') 

Note that the first rational expression in (3) is imaginary and the second is real, 
while in (2') , the first is (for large v) only approximately imaginary and the second 
only approximately real . Nevertheless, these approximations seem good: if we keep 
only the dominant term in the denominator of the first rational expression in (2'), we 
have - 2

(2
rr A 1 J;� = �2

A ; , the first term on the right side of (3) (so the ratio of these two lr l V  JT J)  
expressions approaches one for lalf.e v ) . Likewise, the second rational expression in 
(2') can be approximated with - a(Z 1 +All = a4A 1 i�2 , the second term on the right side JT l \J  7r v 
of (3) (again, the ratio of these two expressions approaches one for large v ) . So at first 
blush it does look like (3) is a legitimate substitution for (2') for large v. We may state 
the case as follows: the first rational terms in each of (2') and (3) are close to each 
other, as are the second terms, so we can conclude that their sums are also close to 
each other. 

But this is where the imprecise phrase, "are close to each other" gets us in trouble: 
the asymptotic "closeness" of the first terms turns out to be of a different order than 
the closeness of the second terms. This causes the order of closeness of their sums to 
be different from what it is apparently assumed to be, and this causes the ¢1 of (3) to 
converge to 0 more slowly than required. To see this, we examine the terms in (2') and 
(3) more closely. 

The first term in (3), the imaginary �,:� , and the first term in (2') , the approximately 

imaginary - ( zrr; 1 ; "J2 , are both of order o(.!. )  for large v ,  and since their ratio ap-ex+ rr: t v  v 
proaches one their difference is o ( � ) . Likewise, the real second term in (3) and the 
approximately real second term in (2') are both 0( ;!z)  and their difference is o ( ;!z ) .  
But the o ( � )  difference between the purely imaginary and approximately imaginary 
terms contains a real 0( ;!z)  part that cannot be ignored when computing the difference 
between the real and approximately real expressions:  

2rr v 

= - -- - terms of order 0 -A 1a  ( 1 ) 
2rr2v2 v3 

for large v ,  where we have used the identity ( ILJ2 = l - 2x + 3x2 - 4x3 + · · · for 

l x I < 1 .  We must add this - 2
A!a2 term to the real term in (3) to give the correct quantity rr v -���+2A2 describing the asymptotic behavior of the real part of ¢1  (v) - ¢ (v) . If we rr v 

don't  make this correction, the - 2
A�a2 term would be absorbed into ¢1 , making ¢1 of rr v 
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order 0 ( -;}z ) .  After making this correction, solving for A 1 , A2 yields 

A 1 = -2Jra1 and A2 = -4n2a2 + aA 1 , (4) 

rather than the incorrect value of -4n2a2 - aA 1 for A2 given earlier. With the sub
stitutions of ( 4 ) , the ¢1 of (2') does not become identical to the </>1 of ( 1  ), but it does 
become o( �) as v ---+ 00 as required. 

How can we keep from making the kind of error seen here? Obviously, the place to 
start would be to try to make rigorous the leap from (2) to (3)-an effort that should 
fail ,  leading to the realization that the leap must be wrong. Given that we already know 
that the imaginary rational expression in ( 1 )  is 0(�)  and the real expression is 0(-;}z) ,  
w e can make explicit the apparent assumptions i n  [3] made i n  the assertion that (3) 
follows from (2) : 

and 

. im(</>1 (v) - </> (v)) 
hm 

v --> oo  1/v 

. re (</>1 (v) - </> (v)) 
hm _.:.._ __ �--'-

v --> oo  1 jv2 

(5) 

(6) 

These are now mathematically precise statements, so it's an easy exercise to show that 
(5) is correct and (6) is wrong. Indeed, we now know that (6) should instead read 

. re (</>1 (v) - </> (v)) A2 - aA 1 
hm = . 

v --> oo  1 jv2 (2n )2 
(6') 

In fact, even this formulation has potential problems : who's to say that in (2), 
im(</>1 (v) - <f> (v)) doesn't have a 0 (-;}z)  part? (5) above doesn' t  guarantee against 
it, and (6') wouldn' t  find such a term if it did exist, in which case ¢1 would again fail 
to be 0 (�) .  

The safest way to proceed then i s  to not worry about decomposing </> 1  - </> into real 
and imaginary parts, but simply compute from (2) 

and then 

I. </>1 (v) - <f> (v) A 1 i  
Ill -----

v --+ oo  1 j v 2n 

I . </>1 (v) - </> (v) - ;,:� A2 - aA 1 
Ill = . 

v--+ oo 1 jv2 (2n )2 

This will insure that we capture the correct coefficients for the 0 ( � )  and 0 ( -;}z)  terms, 
regardless of whether they are real or imaginary. 

In plain words, we must be careful when approximating a sum of terms whose or
ders of convergence are different; if we approximate the terms separately, it may be 
that the approximation of the term of lower order convergence contains a phantom 
term that coverges at the higher rate, and this term would not appear in our approxi
mation of the higher order term because the approximations are being done separately. 
Instead, we should approximate the slower converging term first, and then subtract 
away precisely that approximation before attempting to approximate the higher order 
term(s). 

Acknowledgments. The authors wish to thank the editor and an anonymous referee for very helpful suggestions 
in the preparation of this paper. 
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Why Are the Gergo n n e  a n d  Soddy L i n es 
Perpen d i c u l a r?  A Synthet i c App roach 

Z U M I N G  F E N G  
Ph il l ips  Exeter Academy 

Exeter, NH 03833 
zfeng®exeter.edu 

In any scalene triangle the three points of tangency of the incircle together with the 
three vertices can be used to define three new points which are, remarkably, always 
collinear. This line is called the Gergonne Line. Moreover cevians through these tan
gent points are always concurrent at a common point that, together with the incen
ter, defines a second line, the Soddy Line. Why should these lines be perpendicular? 
Beauregard and Suryanarayan [1]  used Eucildean coordinates to establish these results, 
whereas Oldknow [2] used trilinear coordinates .  But such a geometric gem deserves a 
synthetic geometric proof. We shall use the classical theorems of Ceva and Menelaus 
to define these lines and then establish their perpendicularity by using a certain inver
sion. 

Let ABC be a scalene triangle. Let Q and I be its incircle and incenter, respectively. 
Circle Q touches sides AB ,  BC,  and CA at C1 , A 1 ,  and B� o respectively. Lines A 1 B1 
and AB meet at C2 , and points A2 and B2 are defined analogously. As usual, we set 
AB = c ,  BC = a, C A = b, and s = a+�+c .  Then it is well known that AB1 = AC1 = 
s - a , BA 1  = BC1 = s - b, and CA 1  = CB1 = s - c .  

The Gergonne Line. A lovely result for identifying collinear points is Menelaus'  
theorem: 

Let ABC be a triangle, and let P, Q ,  R be points on the lines BC,  CA ,  AB ,  
respectively. Then P,  Q ,  R are collinear i f  and only if 

BP  C Q  AR 
PC 

. 
QA 

. 
RB 

= 1 . 
(If the lengths are directed, then the product is - 1 .) 
Applying Menelaus' Theorem to line B1 C1 with triangle ABC (F I G U R E  1 )  yields 

AC1 BA2 CB1  BA2 · (s - a ) (s - c) 1 = -- · -- · -- = ' 
C1 B A2C B1 A A2C · (s - b) (s - a) 

and so 
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B c 

Figure 1 

Likewise, we have 

CBz 
BzA 

Consequently, 

s - c ACz 
and = 

s - b CzB 

BAz CBz ACz _ l 
AzC 

. 
BzA 

. 
CzB - ' 

s - a 
s - c 

implying that A2 , B2 , C2 are collinear, by Menelaus' Theorem. Thus, the line passing 
through points A2, B2 , and C2 is uniquely defined (FIGURE 1 ) .  This is the Gergonne 
Line of triangle ABC.  

The Soddy Line . A cevian of a triangle is any segment joining a vertex to a point on 
the opposite side. We can test cevians for concurrence by using Ceva's Theorem: 

Let AD,  BE ,  CF be three cevians of triangle ABC.  Then segments AD, BE,  
C F are concurrent i f  and only if 

AF BD CE 
FB 

. 
DC 

. 
EA 

= 1 .  

Note that 

AB1  CA 1  BC1 (s - a) (s - c) (s - b) 
- · - · - = = 1 . 
B1 C A 1 B C1 A (s - c) (s - b) (s - a) 

By Ceva's Theorem, lines AA 1 ,  BB� o and CC1 are concurrent (FIGURE 1 ) .  The point 
of concurrency is the Gergonne point Ge of triangle ABC.  Because our triangle is 
scalene, I does not lie on any of the lines AA 1 , BB" and CC1 • Hence I and Ge are 
distinct points. Thus there is a unique line passing through I and Ge (FIGURE 1 ) . This 
line is the Soddy line of triangle ABC.  

The Gergonne line and the Soddy line are perpendicular. We apply a certain in
version to show that A2B2 ..l IGe .  Given a point 0 in the plane and a real number 
r > 0, the inversion through 0 with radius r maps every point P (distinct from 0) to 
the point P' on the ray 0 P such that 0 P · 0 P' = r2 • We also refer to this map as 
inversion through y ,  the circle with center 0 and radius r .  Key properties of inversion 
that will be used are (for details, please see [3]) :  

(a) Lines passing through 0 invert to themselves (though the individual points on  the 
line are not all fixed, FIGURE 2, left) . 

(b) Lines not passing through 0 invert to circles through 0 ,  and vice versa (FIGURE 
2, middle) . 
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.: r p 

Figure 2 

(c) Circles not passing through 0 invert to circles not passing through 0 (FIGURE 2, 
right) . 

(d) Inversion is a conformal map; that is, inversion preserves the angle between (the 
tangent lines of) any curves at their intersection points . 

Figure 3 

We consider the inversion I with respect to the incircle Q (FIGURE 3) .  Let I (P) 
denote the image of  element P under the inversion. Then I(A 1 )  = A J .  I(B1 ) = BJ . 
and I(CJ ) = C1 • Because LI B1 A = LIC1 A = � . points A ,  B1 , I ,  C1 lie on a circle. 
Let Qa denote this circle. We define circles Qb and Qc (FIGURE 3) analogously. By 
property (b), I(Qa ) = B1 CJ . I (Qb) = C1 A J . and i(Qc) = A 1 BJ .  

Figure 4 

Let Q 1  be the circle with segment I A 1  as a diameter (FIGURE 4). Then the image 
of Q1 under the inversion is a line, by property (b) . Because Q and Q 1  are tangent to 
each other at A I . by property (d), their images should also be tangent to each other at 
the image of A 1 .  It follows that I(Q J )  = BC.  
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Let A3 be the foot of the perpendicular from I to segment AA 1  (FIGURE 4). Because 
AI  is a diameter of Qa and I A 1  is a diameter of Q" A3 lies on both Qa and n , . 
Thus, I(A3) is the intersection of I(Qa) = B1 C1 and I(Q , )  = BC;  that is, I(A3) = A2 
(FIGURE 1 ) . 

A 

Figure 5 

Points B3 and C3 are defined analogously and the equations I(B3 ) = B2 and 
I(C3 )  = C2 follow in similar manner (FIGURE 5) .  Because LI A3Ge = LI B3Ge = 
LIC3 Ge = I •  points A3 , B3 , C3 , I ,  Ge lie on a circle r with IGe as its diameter. By 
property (b),  l(f') is a line; that is, points A2 , B2 , C2 l ie on a line. (This is another 
proof of the existence of the Gergonne line. Furthermore, this shows that I(Ge) also 
lies on the Gergonne line.) By property (a), the image of ray I Ge is ray I Ge. By 
property (d), to show A2B2 j_ IGe (FIGURE 1 ) , it suffices to show that circle r and 
ray I Ge are perpendicular at their intersection point Ge . But this is evident, because 
IGe is a diameter of circle f' (FIGURE 5) .  
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G o l den Matr i x  R i ng  Mod p 
K U N G - W E I  Y A N G  

Western Mich igan U n ivers ity ( Reti red) 
Ka lamazoo, Ml  49008 

Playing with the "golden matrix ring" Z[A] (A = [ � � ] ) , we had fun proving iden

tities involving Fibonacci numbers (Fo = 0, F1 = 1 ,  1 ,  2, 3, 5, 8, 1 3 , 2 1 ,  . . .  ) in [6] . 
Here we return to Z[A] and show that if we reduce Z[A] modulo p,  then we will get a 
very neat proof of one of the more remarkable properties of Fibonacci numbers : every 
prime p divides some (hence infinitely many) Fibonacci numbers. 
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LAW OF APPEARANCE OF p [3 ,  p .  5 1 ) .  Let p be a prime ::/= 2, ::/= 5. 

( 1 )  If p = 5m ± 1 ,  then Fp- i = 0 (mod p), Fp = 1 (mod p), and Fp+ l  = 1 (mod p). 
(2) If p = 5m ± 2, then Fp- i = 1 (mod p), Fp = - 1  (mod p), and Fp+i = 0 

(mod p). 

Proof. We shall use the Legendre symbol in our discussion. Specifically (�) is 1 if 

a is a quadratic residue modulo p,  and it is - 1  if a is  a non-residue. By induction ( [6] ) ,  
we see that An = Fn_ 1 / + FnA .  A quick calculation shows that (2A - /)2 = 51 . So 
( (2A - 1)2) <P- 1 l/2 = 5 <p- i )f2J , and we have (2A - I)P = 5 <p- i )f2 (2A - / ) . Reducing 
this last equation modulo p and using Fermat's  little theorem and Euler's criterion [2, 
Theorem 83, p. 69] , we get 2AP - I =  (% ) (2A - I) (mod p). If p = 5m ± 1 ,  then 

the Law of Quadratic Reciprocity [2, Theorem 98, p. 76] assures that we have (%) = 

( � )  = 1 .  So AP = A (mod p), i .e . ,  Fp_ 1 / + FpA = A  (mod p) . If p = 5m ± 2, then, 
(% ) is = - 1 .  So AP = I - A (mod p), i .e . ,  Fp_ 1 / + FpA = I - A (mod p) . All the 
desired congruences follow. • 

Since F3 = 2 and F5 = 5 ,  every prime divides some Fibonacci numbers . Since 
d divides n implies Fd divides Fn [6, p. 1 33 ] ,  every prime divides infinitely many 
Fibonacci numbers . 

No additional work is required to extend the above Law to any generalized Fi
bonacci sequence (Gn+Z = Gn+l + Gn) with initial terms Go , G 1 •  

PROPOSITION.  Let (Gn) be a generalized Fibonacci sequence with initial terms 
G0, G 1 •  Let p be a prime ::/= 2, ::/= 5. 

( 1 )  If p = 5m ± 1 ,  then Gp- i = Go (mod p), GP = G , (mod p), Gp+ i = Go + G ,  
(mod p). 

(2) If p = 5m ± 2, then Gp- i = G 1 - 2Go (mod p), GP = Go - G , (mod p), and 
Gp+l = -Go (mod p). 

Proof. All we need to note ( [6, p. 1 32] or by induction) is that Gn_ 1 / + GnA  = 
An ( (G 1  - G0) / + G0A) .  If p = 5m ± 1 ,  then from the proof of the Law of appearance 
of p we see that 

Gp_ 1 / + GpA = AP ( (G 1 - Go) / +  GoA) = A ( (G , - Go) / +  GoA) 

= Go/ + G , A (mod p) . 

If p = 5m ± 2, then, 

Gp_ 1 / + GpA = AP ( (G 1 - G0) / + GoA) = (/ - A) ( (G , - Go) / +  GoA) 

= (G 1 - 2G0) / + (Go - G 1 )A  (mod p) . • 

If we take the initial terms to be G0 = L0 = 2, G 1  = L 1 = 1 ,  then the resulting 
sequence is the Lucas sequence and we have the following 

COROLLARY. Let (Ln )  be the Lucas sequence. Let p be a prime ::/= 2, ::/= 5. 

(1) If p = 5m ± 1 ,  then Lp- i = 2 (mod p), LP = 1 (mod p), and Lp+l = 3 (mod p). 
(2) If p = 5m ± 2, then Lp- i = -3 (mod p), Lp = 1 (mod p), and Lp+ i = -2 

(mod p). 

The Law of appearance of p may be found in [2, Theorem 1 80, p. 1 50] , [3, IV. 
19 ,  p. 47] ,  [4, Theorems A, B ,  C, p. 78] ,  [5, Theorem, p. 68] ; the corollary is in [4, 
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Theorems A', B' ,  C', p. 80] . It is also worth noting that in the Law of appearance of 
p, if p = 5m ± 1 ,  then AP- i = I (mod p) (solving [1 ,  Problem 69, p. 33]) ,  and if 
p = 5m ± 2, then AP+ i = -I (mod p). 
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Problem 2 on the Third International Mathematical Olympiad in 1961  read [3] : 

Let a ,  b, c be the sides of a triangle, and T its area. Prove: 

a2 + b2 + c2 � 4J3 T. ( 1 )  

I n  what case does equality hold? 

This inequality is well known in the literature [1, 4, 8] as WeitzenbOck 's Inequality 
(sometimes spelled Weizenbock) from a paper published in 1 9 1 9  by R. Weitzenbock 
in Mathematische Zeitschrift. Many analytical proofs of the inequality are known-see 
the above references. The "official" solution to the Olympiad problem appears to have 
been trigonometric, employing the identities T = be sin A ,  a2 = b2 + c2 - 2bc cos A ,  
and ( ,J3 sin A + cos A)  /2 = cos (A - 60°) [3] . Note that A denotes the vertex opposite 
the side of length a ,  etc . 

There is a very nice geometrical interpretation of this inequality that seems to 
have been overlooked. If one multiplies both sides of inequality ( 1 )  by ,J3;4, then 
Weitzenbock's inequality can be written as 

(2) 

where Ts denotes the area of an equilateral triangle with side length s. The situation is 
illustrated in FIGURE 1 ,  where (2) states that the sum of the areas T0 , Tb , and Tc of the 
three shaded equilateral triangles is at least three times the area T of the white triangle. 

We now present a purely geometric proof of Weitzenbock's inequality in the form 
given by (2). Since the proof uses the Fermat point of the original triangle, we first dis
cuss this point. The Fermat point of a triangle ABC is the point F in or on the triangle 
for which the sum A F  + B F + C F is a minimum (this is also known as the solution 
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Figure 1 

to Steiner's Problem). See FIGURE 2(a). When each of the angles of the triangle is 
smaller than 120° , the point F is the point of intersection of the lines connecting the 
vertices A, B, and C to the vertices of equilateral triangles constructed outwardly on 
the sides of the triangle, as shown in FIGURE 2(b). Furthermore, each of the six angles 
at F measures 60°. When one of the vertices of triangle ABC measures 120° or more, 
then that vertex is the Fermat point. For a variety of proofs of these rather remarkable 
results, see [2, 6, 7]. (a& 

A B 

Figure 2 

We are now in a position to prove (2). We first consider the case where each angle 
of the triangle is less than 120°. Let x, y, and z denote the lengths of the line segments 
joining the Fermat point F to the vertices, as illustrated in FIGURE 3(a), and note 
that the two acute angles in each triangle with a vertex at F sum to 60°. Hence the 
equilateral triangle with area Tc is the union of three triangles congruent to the dark 

Figure 3 

(b) c 
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gray shaded triangle with side lengths x, y ,  and c ,  and an equilateral triangle with side 
length lx - y 1 .  The same is true of the other triangles sharing the vertex F, and hence 

(3) 

which establishes (2) in this case since 71x-yl • 11y-z l • and 1lz-x l are each nonnegative. 
When one angle (say C) measures 120° or more, then, as illustrated in FIGURE 3(b ), 

we have 

(4) 

which completes the proof. 
It follows from (3) that we have equality in (1) and (2) if and only if x = y = z, so 

that the three triangles with a common vertex at F are congruent and hence a = b = c, 
i.e. , the original triangle is equilateral. 

The relationship in (3) is actually stronger than the WeitzenbOck inequality (1), and 
enables us to now prove another inequality, itself stronger than (1), the Hadwider
Finsler Inequality [l, 8]: If a, b, and c are the lengths of the sides of a triangle with 
area T, then 

a2 + b2 + c2 2: 4.J3 T + (a - b)2 + (b - c)2 + (c - a)2 • (5) 

In terms of areas of triangles, (5) is equivalent to 

(6) 

Figure 4 

To prove that (3) implies (6) when all three angles measure less than 120° , we need 
only show that lx - Y l  2: Ia - b l , IY - z l 2: l b - c l , and l z - xi 2: l c - a l . Without 
loss of generality, assume that a 2: b 2: c. Within triangle ABC reflect the triangle 
with sides of length b, x, and z about the segment of length z as shown in FIGURE 4, 
to create two congruent light gray triangles (recall that each of the three angles at F 
measures 120°). Then in the dark gray triangle we have b + y - x 2: a, or equivalently, 
y - x 2: a - b. The other two inequalities are established similarly, and hence from 
(3) we have 

Ta + Tb + Tc = 3T + 71x-y l + 71y-z l  + 1lz-x l 
2: 3T + 1la-bl + 1lb-cl + Ile-a l · 

In the case where one angle (say C) measures 120° or more, we have z = 0, x = b, 
and y = a . We refine the inequality in (4) to Ta + Tb + Tc 2: 3T + 1la-bl + Ta + Tb 
(see FIGURE 3(b)), and note that ti 2: l b - c l , and b 2: l c - a l ,  from which (6) follows. 
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Proof Without Words: Area of a Parabo l i c  Segment 

0 b ' ' ' ' ' ' - - - - - - - - - - - - - - - - - - - - - - - - - - -' ' ' 

' ' 
1 - - - - - - - - - - J  _ _  _ 

. 
I - - -

0 

b 

The area under the parabola 
y = x2 on [0, b] is  � ·  

b 

{b x2dx = Volume of Pyramid = � · height · base = � · b · b2 = 
b3 

lo 3 3 3 
Carl R. Seaquist 

Texas Tech University 
Lubbock, TX 79409 
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P RO POSA LS 

To b e  considered for publication, solutions should b e  received by November 7 ,  
2008. 
1796. Proposed by Matthew McMullen, Otterbein College, Westerville, OH. 

A point is selected at random from the region inside of a regular n-gon. What is the 
probability that the point is closer to the center of the n-gon than it is to the n-gon 
itself? 

1797. Proposed by Ovidiu Furdui, The University of Toledo, Toledo, OH. 

Let a ,  b, and c be nonnegative real numbers . Find the value of 

. � Jn2 + kn + a  
hm L... . n�oo k= l  Jn2 + kn + bv'n2 + kn + c 

1798. Proposed by H. A. ShahAli, Tehran, Iran. 

Let x ,  y ,  and z be positive real numbers with x + y + z = xyz .  Find the minimum 
value of 

and find all (x , y ,  z) for which the minimum occurs . 

1799. Proposed by Luz DeAlba, Drake University, Des Moines, /A. 

Let S j , s2 , • . .  , sn be real numbers with 0 < s 1  < s2 < · · · < Sn . For 1 ::;: i ::;: j :S: n 
define aij = aj i = Sj , and let A be the n x n matrix A =  [aij h �i , j �n · 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 

undergraduate mathematics .  Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution . 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 

separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames IA 500 1 1 ,  or mailed electronically (ideally as a Jb.T)3X file) to 

ehj ohnst(Qiastate .  edu. All communications, written or electronic, should include on each page the reader' s  

name, full address,  and a n  e-mail address and/or FAX number. 

2 2 0  
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(a) Calculate det(A) .  

(b) Let A- 1 
= [bijh.:oi , j .:on · Find the value of I:;=, L�= I bij . 

1800. Proposed by Michel Bataille, Rauen, France. 

2 2 1 

Let ABC be a triangle, let E be a fixed point on the interior of side AC,  and let F be 
a fixed point on the interior of side A B .  For P on E F, define 

[P BC]2 
p (P) = 

[PC A] [P AB]  

For which P does p (P) take on  its minimum value? What i s  this minimal value? 

Qu i ck ies 
Answers to the Quickies are on page 22 6. 

Q981. Proposed by Jan Mycielski, University of Colorado, Boulder, CO. 

Show that 

I: (_!_ TI ( 1 - _!_)) = 1 ,  
p p q<p q 

where p and q run over the primes. 

Q982. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA. 

It is well known that if f : [0, 1 ]  --+ [0, 1 ]  is a continuous function, then f must have 
at least one fixed point. However, the example f (x) = x2 , which only has 0 and 1 as 
fixed points shows that the set of fixed points need not be an interval . 

Let f : [0, 1 ] --+  [0, 1 ]  be a function with l f (x) - f(y) l ::; lx - y l for all x ,  y E 
[0, 1 ] .  Prove that the set of all fixed points of f is either a single point or an interval . 

Sol ut ions  
An isosceles condition June 2007 

1771. Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan. 

Let P be a point inside of triangle ABC,  and let AA' ,  BB' ,  and CC' be the cevians 
through P .  Prove that if A' B' = A'C' and BC' = C B' ,  then triangle ABC is isosceles .  

Solution by Elton Bojaxhiu, Albania, and Enkel Hyselaj, Australia. 
It suffices to show that AC' = AB' , since then AB = AC' + C' B = AB' + B'C = 
AC.  Assume that AC' f= AB' .  Then without loss of generality we may assume that 
AB' > AC' , and hence that LAC' B' > LAB'C' .  Find points B1 , M, C1 on line B'C' 
so that each of B B1 , A'M, and CC1 is perpendicular to line B'C' .  Because A'B' = 
A'C',  it follows that M is the midpoint of segment B'C' ,  so B'  M = MC'.  Thus, 

C1 M = (B'C) cos(LA B'C') + B' M > (BC') cos (AC' B') + MC' = B1 M.  

I t  then follows from similarity that 

BA' B1 M -- = -- < 1  
A'C MC1 ' and hence that 

BA' CB'  AC' BA'  AC' 
------ = ---- < 1 .  
A'C B'A C'B A'C B'A 
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But this  last inequality contradicts Ceva's Theorem. Thus it follows that AC' = AB' 
and A B  = AC.  

A 

c1 M B1 
i-1 B' i-1 C' i-1 

c 
A' 

i3 

Also solved by Byoung Tae Bae (Korea), Herb Bailey, Michel Bataille (France), Robert Calcaterra, Adam 
Coffman, Chip Curtis, Fejentalaltuka Szeged Problem Solving Group (Hungary), John Ferdinands, Dmitry Fleish
man, Michael Goldenberg and Mark Kaplan, Peter Gressis and Dennis Gressis, Chris Hill, Geoffrey A. Kandall, 
Elias Lampakis (Greece), Charles McCracken, Mike Meehan, Jose H. Nieto (Venezuela), Volkhard Schindler 
(Germany), Raul A. Simon (Chile), Earl A. Smith, Albert Stadler (Switzerland), George Tsapakidis (Greece), 
Alexey Vorobyov and Michael Vorobyov, and the proposer. 

Taylor minima June 2007 

1772. Proposed by Rick Mabry, Louisiana State University at Shreveport, Shreveport, 
LA. 

Let n be an even positive integer and let a be a real number. Let Tn (x ; a) denote the 
degree n Taylor polynomial at the point x = a for the exponential function ex . 

(a) Prove that for each real a ,  the polynomial Tn (x ; a) assumes its minimum at a 
unique point. 

(b) Let ta denote the value of x for which Tn (x ; a) assumes its minimum. Prove that 
the planar set 

is itself the graph of an exponential function. 

Solution by Michael Janas and Suzanne Donie, Augsburg College, Minneapolis, MN. 
Let n be an even positive integer. 

(a) Note that Tn (x ; a) > 0 whenever x 2: a. When x < a, Lagrange's form of the 
remainder gives 

ec 
Tn (x ; a) = ex - (x - a) <n+ i l > ex > 0 

(n + 1 ) !  ' 

where c is some real number in [x , a] .  Thus, Tn (x : a) > 0 for all x .  Next note 
that T�' (x ; a) = Tn_2 (x ;  a) with n - 2 even, so Tn (x ; a) is convex. To see that 
Tn (x ; a) has a unique minimum, note that T� (x ; a) = Tn_ 1 (x ;  a) has odd degree 
and, because it has a positive derivative, is strictly increasing . Thus T� (x ; a) has a 
unique zero. This zero is the unique value at which Tn (x ; a) assumes its minimum. 
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(b) Note that Tn (x ; a )  = ea Tn (x - a ; 0) achieves its minimum where Tn (X - a ; 0) 
does, namely at the unique x value with x - a = t0 • Thus ta = a +  t0 and so 

which is exponential in ta , as desired. 

Also solved by Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia), Robert 
Calcaterra, John Christopher, Fejentaldltuka Szeged Problem Solving Group (Hungary), John Ferdinands, Peter 
Gressis and Dennis Gressis, Elias Lampakis (Greece), David Lovit, Kim Mcinturff, Matthew McMullen, Jerry 
Metzger and Thomas Richards, Jose H. Nieto ( Venezuela), Nicholas C. Singer, Albert Stadler (Switzerland), 
Richard Stephens, David Stone and John Hawkins, Marian Tetiva (Romania), Nora T hornber, Alexey Vorobyov 
and Michael Vorobyov, Michael Vowe (Switzerland), and the proposer. 

Maximum of a product June 2007 

1773. Proposed by H. A. ShahAli, Tehran, Iran. 

Let a ,  b, e, d be nonnegative real numbers with a +  b = e + d = 1 .  Determine the 
maximum value of 

and determine conditions under which the maximum is attained. 

I. Solution by Northwestern University Math Problem Solving Group, Northwestern 
University, Evanston, IL. 
We can rewrite the given expression as 

( (ae + bd) (ad + be) - (ab - ed)2) 2 + (ab - ed)2 

+ ((a + b)2 (e + d)2 - I) (ab - ed)2 • 

Because a + b = e + d = I, the last term is 0, so the expression reduced to 

( (ae + bd) (ad + be) - (ab - ed)2) 2 + (ab - ed)2 . (I) 

First note that (ae + bd) (ad + be) 2: (ab - ed)2 . Indeed, we may assume, without 
loss of generality, that a 2: e 2: d 2: b. Then ed - ab > 0 and the result follows from 
the immediate inequalities ae + bd 2: ed - ab and ad + be 2: ed - ab. 

Also, by the AM-GM inequality, 

(ae + ad + be + bd)2 
(ae + bd) (ad + be) _::::: 

4 
1 
4 '  

with equality if and only if a e  + bd = ad +  be, that is, if and only if (a - b) (e - d) = 
0. This holds when either a = b = � or e =  d = � ·  

Thus, expression ( 1 )  i s  less than or equal to 

I 2 2 ( 
) 2 

4 - (ab - ed) + (ab - ed) , (2) 

with equality if and only if a = b = � or e = d = � .  Expression (2) is an increas
ing function of (ab - ed)2 • With the given restrictions, (ab - ed)2 reaches its max
imum of 1r; at the points (a , b, e, d) = G .  � .  1 ,  0) , ( � ,  � .  0, 1 ) , {I, 0, � .  D ,  and 
( 0, I ,  � ,  D ,  yielding a maximum of }i6 for the given expression. 
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II. Solution by Michel Bataille, Rauen, France. 
Let K LM N be a square with side length 1 ,  and let P be a point on or inside of the 
square. Let the distances from P to the sides be a ,  b, c, d as in the diagram. Then 

This reduces the problem to the problem of finding the maximum value of P K · P L · 
PM · PN .  

K .------------.-----_____, L 
a 

c ' , ' , , .e- - - d 

b 

N '----------'------------" M 

Let zu be the complex affix of point U.  We may assume that ZN = 0, ZM = 1 ,  Z K = i ,  
and Z L = 1 + i ,  and set Z p = z . Then 

P K  · PL · PM ·  PN = l f (z) l ,  

where f(z) = z (z - 1 ) (z - i ) (z - 1 - i ) .  Because f is entire, the maximum modu
lus theorem implies that the desired maximum is attained at a boundary point of the 
square . By symmetry, it is sufficient to investigate the maximum of l f (z) l  on the real 
interval [0, 1 ] ,  that is, the maximum on [0, 1 ]  of 

¢ (x) = l f (x) l = x ( 1 - x)Jx2 + 1 J(x - 1 )2 + 1 . 

By a straightforward calculation 

¢' (x) = ( 1 - 2x)1/f (x) where 

on [0, I ]  It follows that ¢ attains its maximum on [0, 1 ]  only at the point x = 4 with 
¢ ( 4 )  = ft. Thus the desired maximum is ;;6 , and is attained if and only if (a , b, c, d) 
is one of ( 1 , 0, t .  ! ) ,  (0, 1 , t .  ! ) ,  ( 4 , t .  1 ,  0) , or ( 4 , t .  0, 1 ) . 

Also solved by Byoung Tae Bae (Korea), Herb Bailey, Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Aus
tralia), Paul Budney, Robert Calcaterra, William Cross, Jim Delany, Gregory Dresden, Fal/ 2007 Calculus Class 
at Missouri State University-Maryville, Dmitry Fleischman, Elias Lampakis (Greece), Kee-Wai Lau (China), 
Jerry Metzger and Thomas Richards, Jose Nieto ( Venezuela), Angel Plaza and Sergio Falcon (Spain), Volkhard 
Schindler (Germany), Nicholas C. Singer, Albert Stadler (Switzerland), David Stone and John Hawkins, Marian 
Tetiva (Romania), Alexey Vorobyov and Michael Vorobyov, Michael Vowe (Switzerland), Stan Wagon, and the 
proposer. There were six incorrect submission . .  

Idempotent, hermetian, and equal June 2007 

1774. Proposed by Gatz Trenkler, Department of Statistics, University of Dortmund, 
Dortmund, Germany. 
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Let P and Q be idempotent, hermetian matrices of the same dimension and rank. 
Prove that if P Q P = P, then P = Q.  

Solution by Nicholas Singer, Annandale, VA. 
Let P and Q be complex matrices of dimension n and rank r .  Then 

en 
= range(P) E9 ker(P ) ,  

so P i s  the orthogonal projection onto range(P)  and I - P is the orthogonal projection 
onto ker(P) = range(P)-L .  Similar statements hold for Q. Because P Q P = P and P 
and Q both have rank r ,  it follows that rank(P Q) = r = rank( Q P ) .  Furthermore, 
because (P Q) (Px) = Px for all x in the range of P ,  we see that P Q  is the identity 
on range(P) .  In addition, since rank(P Q) = dim(range(P) ) ,  we have P Q  = 0 on 
ker(P) .  Hence, P Q  = P because the two agree on range(P)  and ker(P) . Also, 

QP = Q*P*  = (P Q)*  = P* = P,  

so  Q i s  the identity on  range(P)  and, because rank(Q)  = r = dim(range(P) ) ,  Q = 0 
on ker(P ) . It follows that P = Q because they agree on both range(P)  and ker (P) .  

Also solved b y  Michael Andreoli, Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel Hysnelaj 
(Australia), Brian Bradie, Paul Budney, Luz M. DeAlba, Michael Goldenberg and Mark Kaplan, Eugene A. Her
man, Joel Iiams, Eugen J. Ionascu, Jerry Metzger and Thomas Richards, Jose Nieto (Venezuela), John H. Smith, 
Jeffrey Stuart, Nora Thornber; Alexey Vorobyov and Michael Vorobyov, Xiaoshen Wang, and the proposer. 

Vertex disjoint paths June 2007 

1775 . Proposed by Christopher J. Hillar, Texas A&M University, College Station, TX. 

Characterize those graphs G that satisfy the following conditions : between each pair 
of vertices A and B in G, 

(a) there exist two vertex disjoint paths. 

(b) any set of vertex disjoint paths between A and B has at most two elements . 

Solution by Missouri State University Problem Solving Group, Missouri State Univer
sity, Springfield, MO. 
We assume that graph means simple graph so there are no loops and at most one edge 
joining any pair of distinct vertices. Conditions (a) and (b) the imply that G must have 
at least three vertices. 

Let A and B be two of these vertices. Condition (a) implies that G contains a cycle 
C on which A and B are vertices. If P is a vertex of G not on C, then because there are 
two vertex disjoint path between A and P and two between B and P ,  there must be 
two vertex disjoint paths from P to distinct points of C. Let D and E be the endpoints 
of these paths on C. (Note that it is not necessary to assume that D and E are distinct 
from A or B . )  Thus we have a situation something like 

p 

A 

This clearly yields at least three vertex disjoint paths between D and E,  contradicting 
condition (b) .  If G has an edge not contained in C, say an edge between the two distinct 
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vertices X and Y on C, then we have at least three vertex disjoint paths between X and 
Y .  It follows that G must be the cycle C.  

A 

Also solved by Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia), Robert Calcaterra, Eddie Cheng 
and Laszlo Liptak, Dmitry Fleischman, Jerrold W Grossman, Joel Iiams, S. C. Locke, Jose Nieto ( Venezuela), 
Paul S. Peck and David I. Kennedy, Alexey Vorobyov and Michael Vorobyov, and the proposer. T here was one 
solution with no name. 

Answers 
Solutions to the Quickies from page 22 1 .  

A981.  For prime p let 

Sp = {n : n is a positive integer, p i n ,  and q ;I' n for any prime q < p} ,  

and note that the density of S P in  the set of positive integers is 

_!_ TI ( 1 - _!_) . p q<p q 

Because the sets SP are pairwise disjoint and UP SP = {2 ,  3 ,  4, . . .  } ,  the result follows. 

A982. Let F = {x : x E [0, 1] and f(x) = x } .  Because f is continuous, it follows 
that F is compact. Let a be the smallest number in F and b the largest number in F. 
Clearly F s; [a , b] .  Now let x0 be any point in  [a , b] . Because a is a fixed point for 
f, 

f (xo) - a :S 1 / (xo) - a l = l f (xo) - f(a) l :S xo - a .  

Therefore, f (x0) ::::: x0 . Similarly, 

b - f(xo) :S l b - f (xo) l  = 1 / (b) - f (xo) l  :S b - Xo , 

from which f(x0) � x0 . It follows that f(x0) = x0 , so x0 is a fixed point f. Therefore 
F = [a ,  b] . 



R E V I E W S  

PAU L j .  CAM P B E LL,  Editor 
Be lo i t  Co l l ege 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. A rticles, books, and other materials are 

selected for this section to call attention to interesting mathematical exposition that occurs out

side the mainstream of mathematics literature. Readers are invited to suggest items for review 

to the editors. 

Julia Robinson and Hilbert's Tenth Problem. 2008. All-region video on NTSC DVD;  run
ning time 54 min. Produced and directed by George Csicsery, narrated by Danica McKellar. 
Available from Zala Films, www . zalaf i lms . com ; $ 1 49 for colleges/libraries (includes per
formance rights), $29.95 for home/personal use. Order form at http : I /www . z al af i lms . c om/ 

downloads / j u l i af lyer_ 1 1 1707 . pdf . ISBN 978--097245885-6. 

I have a special affection for Hilbert's  Tenth Problem, having taken a course devoted to it in 
graduate school just before the final step by Yuri Matiyasevich. And I have a special affec
tion also for Constance Reid, sister of Julia Robinson, whose biographies of mathematicians
including Julia, about her sister, a major contributor to solving "Hilbert X"-have enriched us 
all .  Will this video have a comparable effect on students and the public who know nothing about 
Hilbert X or Reid? I think so ! Reid's personal recollections and reflections-delivered in a viva
cious and memorable style over family photos-contribute to a vivid, entrancing, and beautiful 
portrait, enhanced by participation of Julia's theorem-partners and others currently delving yet 
deeper. The mathematics involved, touched on briefly in the film, is exposited in generous out
line in the extra features included on the disc. The producer/director, George Csicsery, did also 
the award-winning N is a Number: A Portrait of Paul Erdos ( 1 993) and the newly-released Hard 

Problems: The Road to the World's Toughest Math Contest (reviewed below).  (Thanks to Phil 
Straffin.) 

Flatland: The Movie. 2008. All-region video on NTSC DVD;  running time 35 min.  English, 
Spanish, and Italian subtitles .  Directed by Jeffrey Travis. Available from Flat World Produc
tions LLC, www . f l at l andthemovie . com; $ 1 20 for educational edition (includes school site 
license for classroom and school showings, the book, and teacher worksheets), $29.95 for 
home/personal use. ISBN 978-1-6046 1-537- 1 .  Abbott, Edwin A. ,  with Thomas Banchoff and 
the filmmakers of Flatland, Flatland: A Journey of Many Dimensions-The Movie Edition. 

Princeton, NJ: Princeton University Press; xv + 1 68 pp, $ 1 5 .  ISBN 978--0-69 1-13657-8 . Flat

land: The Film. 2007 . All-region video on NTSC DVD;  running time 98 min. Directed by Ladd 
Ehlinger, Jr. Available from Flatland Productions, Inc . ,  http : I /www . f l at l andthe f i lm .  c om/ ; 
$24 (free license for educators to show the film to their students) . ASIN: BOOONJ60FM. 

Not one, but two animated versions of Edwin Abbott's 1 884 novel Flatland ! The extraordinarily 
well-done Flatland: The Movie takes just the right contemporary liberties in updating a 1 25-
year-old classic to a thoroughly enjoyable experience with geometric tones and moral overtones. 
One of my students called it "the perfect after-school special," which intrigues viewers with the 
potential of considering dimensionality. Extras on the disc include a PDF of the accompanying 
book and interviews with the actors portraying the voices (which feature Martin Sheen and 
his brother). The accompanying book includes the entire text of the original novel and of the 
screenplay, and an introduction by Thomas Banchoff (Brown University)-but most regrettably 
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not Banchoff's "new introduction" from the Princeton University Press 1 99 1  reprint of the 
novel, which admirably sets both the book and its author in an informative and inspiring context. 
I regret that I cannot report to you yet on the longer Flatland: The Film, since I have not seen 
it; but I felt that I should mention it here anyway. 

Hard Problems: The Road to the World's Toughest Math Contest. 2008. Video on NTSC DVD; 
running time 82 min. Produced and directed by George Csicsery. Available from the MAA 
http : I /www . hardprobl emsmovie . com/ ; $99 for institutions/libraries (includes performance 
rights) ,  $24.95 for home/personal use (member price $ 1 9.95).  ISBN 978-0-88385-902-5 . 

This inspiring and informative video profiles the drive, motivation, and humanity of high school 
students on the U.S .  team in the 2006 International Mathematical Olympiad, together with 
their steps to reach it and their performance at it. Says a U.S .  coach about the team, "They're 
Americans . . .  they represent our educational system" ; but what will strike viewers is that top 
U.S .  contestants are overwhelmingly immigrants and sons of immigrants who go to elite private 
schools .  [Why-as part of "coordination of problems"-are team coaches allowed multiple 
sessions to pressure judges for higher scores for their teams???] (Thanks to Rama Viswanathan. )  

Hayes, Brian, Group Theory i n  the Bedroom, and Other Mathematical Diversions, Hill and 
Wang, 2008;  xi + 269 pp, $25.  ISBN 978-80809052 1 9-6. 

Get past the innuendo of the title (after all, it's about turning a mattress)-what you have here 
is a collection of a dozen pieces of the best scientific writing around ("Every essay in this 
book is a gem"-Martin Gardner). They are a small fraction of author Hayes's "Computing 
Science" column in American Scientist over the past 1 5  years (so we can look forward happily 
to future compilations ! ) .  Topics include the Strasbourg Cathedral brass clock ("Easter in 1 1 842 
falls on April 3"), demand for randomness, statistical physics in economics, the genetic code, 
frequency of wars, location of the Continental Divide, the Stern-Brocot tree, number partitions, 
namespace, counting in ternary, equality of numbers, and (not least) the bedroom piece. 

Archimedes' Square. Puzzle, Kadon Enterprises, 2003 ; $29, http : I /www . gamepuzzl e s . c om/ 

t i l ing3 . htm#AS . Rorres, Chris, Stomachion: an introduction, https : I /www . c s . drexe l . 

edu/ - c rorre s/Archimede s/St omachion/intro . html . 

The stomachion puzzle is a tangram-like puzzle consisting of 1 4  pieces; the Rorres Web page 
has links to mention of the stomachion by Roman authors and to geometric construction of the 
pieces from a 1 2  x 1 2  grid. The Archimedes Codex contains a mysterious fragment about the 
puzzle. The re-emergence of the codex in 1 998 engaged Reviel Netz (Stanford University) as 
it main decoder. Mathematics-lover Joe Marasco sent Netz a replica of the puzzle but with the 
pieces assembled into a square in a different pattern than in the standard diagram. Marasco and 
Netz concluded that Archimedes'  intention had been combinatorial: to calculate the number 
of ways that the pieces can be assembled to form a square. What total Archimedes may have 
arrived at, we don't  know; the last part of the fragment is missing. Now you too can own a copy 
of the puzzle and consider its 536 fundamentally different solutions.  (Thanks to Joe Marasco.) 

Steen, Lynn Arthur, On being a mathematical citizen: The natural NExT step, http : I /www . 

s t o l af . edu/peop l e / s t e en/Pape r s / l e i t ze l . html . Percival, Colin, Security is mathemat
ics, http : / /www . daemonol ogy . net /blog/2008- 03- 2 1 - s e curity- i s  

- mathemat i c s . html . 

The message of Lynn Steen's  James R.C. Leitzel Lecture at MathFest last August is, "you 
need to use your mathematics for more than mathematics itself." With thorough footnotes, he 
cites the value of mathematical thinking about measures of quantity (how should graduation 
rates be calculated?), quality (how should learning outcomes be assessed?), and readiness (how 
can admissions and placement exams be aligned with the mathematical skills expected in col
lege?). He offers disturbing but convincing explanations for lack of progress in mathematics 
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scores on the National Assessment of Educational Progress and for lack o f  decline i n  the need 
for remedial mathematics courses in college. He indicts the psychometric methodology behind 
"high stakes" state tests and laments educators ' belated discovery of unintended consequences 
("test only reading and mathematics, only reading and mathematics get taught") .  Meanwhile, 
Percival 's  short blog asserts that by virtue of their training, all mathematicians have the "secu
rity mindset"-a drive to question hidden assumptions and to consider "edge" cases-that is 
essential for security professionals and fundamental to avoiding unanticipated dangers. 



N E W S  A N D L E T T E R S 

To the Editor: 

With regard to "On Infinitely Nested Radicals" by Zimmerman and Ho (this MAGA
ZINE, February 2008, pp 3-1 5 ,  hereafter referred to as "ZH"), the following additional 
references might be noted. 

Lemma 1 of ZH appears in the solution to Problem 460, Amer. Math. Monthly 23 
( 1 9 1 6) 209 . ZH's Theorem 1 is essentially Problem E874 of the Monthly, whose so
lution appears in Amer. Math. Monthly 51 ( 1 950) 1 86. An earlier appearance of the 

form J a - bJ a - bF occurs in T. S .  E. Dixon, "Continued Roots," The Analyst 5 

( 1 878) 20-2 1 ,  while J a - J a +  J a - ,Ja+ · · · is thoroughly treated in the solution 

to Problem 1 1 74, this MAGAZINE 57 ( 1 984) 299-300. 

The nested radicals arising out of trigonometric identities have a long history of being 
independently rediscovered. Within the last 100 years we find M. Cipolla, "Intorno 
ad un radicale continuo," Periodico di Mat. series 3, 5 ( 1 908) 1 79-1 85; G. P6lya and 
G. Szego, Aufgaben and Lehrsiitz aus der Analysis, Volume I, Springer, Berlin, 1 925 
(reprinted as Problems and Theorems in Analysis, Volume I, translated by D. Aep
pli, Springer-Verlag, 1 972), Problems 1 83-1 85 in Part I; P. J. Myrberg. "lteratin von 
Quadratwurzeloperationen," Ann. Acad. Sci. Fenn. Ser. A. I, 259 ( 1 958) ; and the ZH 
reference, L. D. Servi ,  "Nested square roots of 2," Amer. Math. Monthly 110 (2003) 
326-330. 

2 30 

Dixon J. Jones 
Fairbanks, AK 



Scient ific Notebook· 
Mathematical Word Process ing • Computer Algebra 

" T o  melle .., "*"-ted pklt ln apherical coordll\lltll 
1 Type 1n •XJ»Nssm In three wn.bles. 

2 W1Ch the insertion point in the expression. choose 

The next •XW!"'P6e ahows • aphwa hi. grows from 
Axes. 
.. Plot 3D Animated ... 8pher1c:al 

Makes Teaching and Learning 
Mathematics Easier 

Scientific Notebook, an easy-to-use 

mathematical word processor with a 

....!l.!JI) , . ... .. ..- .... .. --... _.._ 

built-in computer algebra system, gives 

students a powerful tool for reports, 

homework, and exams. Students can enter 

equations, create tables and matrices, import 

graphics, and graph in 2D and 3 D  within 

documents. 2D and 3 D  plots can be 

animated and, with Open GL 3D graphics, 

you can rotate, move, zoom in and out, and 

fly through 3 D  plots. Teachers and students 

can share mathematical documents 

containing equations and plots over the 

Internet. When teachers use Scientific 
WorkPlace® and students use Scientific 
Notebook, the result is an effective 

environment for teaching and learning 

mathematics. 

Visit our website for free trial versions. 
www.mackichan .com/amm 
Toll-free: 877-724-9673 • Fax: 360-394-6039 
Email: info@mackichan.com 
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Calcu lus: Understanding Its 
Concepts and Methods 

This book on CD uses Scientific 
Notebook to apply recent advances 
in software technology to the 
teaching of calculus. Students learn 
through explanations, interactive 
examples, explorations, problems, 
and self-quizzes. Students can 
interactively explore examples and 
carry out experiments which reveal 
what calculus is  all about. 



B E STS E L L E RS F RO M  T H E :  

MAT H E MAT I CAL AS S O C IAT I O N  OF AME RI CA 

A Garden of I ntegra ls 
Frank Burk 

The d e rivat ive a n d  the i nteg ra l a re the 
fu nd a m enta l n otions  of ca l c u l us .  Tho u g h  there i s  

essentia l l y  o n l y  one der ivative, there i s  a va r iety 

of i nteg ra l s, d eve l o ped ove r the yea rs for  a 

va r iety of pu rposes, a n d  t h i s  book d escr i bes 

them.  N o  other  s i n g l e  sou rce treats a l l  of the 

i nteg ra l s  of  Ca uchy, R iemann,  R iema n n -St ie ltjes, 

Lebesg u e, Lebesg u e-Ste i l tjes, H e n stock-Ku rzwe i l ,  

Wei n e r, a n d  Feyn m a n .  

T h e  boo k ca n serve a s  a refe re nce, a s  a s u p p l ement t o  cou rse that 

i n c l ude the th eory of i nteg rat ion,  and a sou rce of exe rc ises i n  a n a lysis .  

There i s  no other  book l i ke it .  

Cata log Code: DOL- 3 1  List: $53.95 

ISBN:  978-0-8838S-337-S Series: Dolcian i  M A A  Member: $43.50 

Differentia l  Geometry and Its Appl ications 
John Oprea 

Diffe rentia l geometry has  a long,  wonde rfu l 
h i story a n d  has  fou n d  re l eva nce i n  a reas 

ra n g i n g  fro m m a c h i nery design to theories of 
natu re's fu nda menta l  forces to the study of DNA. 
Th i s  book stud ies the d ifferentia l geometry of 

su rfaces with the goal of h e l p i n g  stu d ents m a ke 

the tra n s it ion from co m pa rtmenta l ized cou rses to 

a type of mathem atics that i s  a u n ified whole.  The 

book m i xes geom etry, ca lcu l u s, l i nea r a l gebra, 
d iffe renti a l  eq uat ions, com p l ex va r ia b l es, the 
ca lcu l u s  of va r iat ions, and notions  fro m the sc iences. I nto the mix of 

these ideas co mes the o p po rtu n ity to v i s u a l ize concepts th ro u g h  the 

use of com p uter a lgebra systems.  The book i s  r ich i n  resu lts a n d  

exe rc ises that fo rm a conti n u o u s  s pectr u m  ra n g i n g  from those that 

depend on ca l c u l at ion to p roofs that a re q u ite a bstract. 

I S B N :  978-0-88385-748-9 

Catalog Code: DGA 

Series: MAA Textbooks 

List: $69.95 

MAA Member: $57.00 

O rder your copy today!  
1 .800 .33 1 . 1 622 e www .maa .org 



N E W F RO M  T H E 

MAT H E MAT I CAL AS S OC IAT I ON O F  AME RI CA 

A Radica l Approach to Ana lysis 
David Bressoud 

In the second edition of this MAA classic, 

exploration continues to be an essential 

component. More than 60 new exercises have 

been added, and the chapters on Infinite 

S ummations, Differentiab i l ity and Continuity, 

and Convergence of I nfinite Series h ave been 

reorganized to eas i ly  identify key ideas . A 
Radical Approach to Real Analysis is an 

introduction to real  analysis,  rooted in the 

historical issues that shaped its development. 

I t  can be used as a textbook, as a resource for 

an instructor who prefers teaching a traditional 

course, or as a resource for the student who has taken a traditional course 

and sti l l  does not understand what real  analysi s  i s  about and why it  was 

created . 
List: $52.95 

ISBN: 978-0-88385-747-2 

Catalog Code: RAN-2E 

Series: MAA Textbooks MAA Member:$42.95 

A Radica l  Approach to Lebesgue's 
David Bressoud Theory of Integration 
Published jointly with Cambridge University Press 

This book is an introduction to measure theory and Lebesgue integration 
rooted in  and motivated by the historical questions 
that led to its development. It  stresses the original 
purpose of the definitions and theorems, and 

highl ights some of the difficulties encountered as 
these ideas were refined. The text begins with 
Riemann's  definition of the i ntegral ,  then fol lows 
the efforts of many different mathematicians who 
wrestled with the difficulties inherent i n  the Riemann 
integral ;  leading to the work of Jordan, Borel and 
Lebesgue, who final ly broke with Rieman n 's 

�ll:.AIIII .. definition. In ushering a new way of understanding 

integration, they opened the door to fresh ways of 
viewing many of the previously intractable problems of analysis.  

Catalog Code: RADL List: $39.99 

ISBN: 978-0-521 7 1 - 1 83-8 Series: MAA Textbooks MAA Member:$32.00 

O rder your copy today!  
1 . 800 .33 1 . 1 622 e www .maa.org 
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